結果
問題 | No.2751 429-like Number |
ユーザー |
![]() |
提出日時 | 2024-05-11 10:52:21 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 589 ms / 4,000 ms |
コード長 | 2,720 bytes |
コンパイル時間 | 2,096 ms |
コンパイル使用メモリ | 203,320 KB |
最終ジャッジ日時 | 2025-02-21 13:33:51 |
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 6 |
other | AC * 22 |
ソースコード
#include <bits/stdc++.h>using namespace std;template <class T>T modpow(T a, T b, T mod) {T cur = a, res = 1;while (b) {if (b & 1) {res = (res * cur) % mod;}cur = (cur * cur) % mod;b >>= 1;}return res;}bool MillerRabin(long long n) {if (n <= 1) {return false;}if (n == 2 || n == 7 || n == 61) {return true;}if (n % 2 == 0) {return false;}vector<long long> A;if (n < 4759123141) {A = {2, 7, 61};} else {A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};}long long s = 0, d = n - 1;while (d % 2 == 0) {s++;d >>= 1;}for (auto a : A) {if (n <= a) {return true;}long long x = modpow<__int128_t>(a, d, n);if (x == 1) {continue;}bool ok = false;for (int i = 0; i < s; i++) {if (x == n - 1) {ok = true;break;}x = (__int128_t)x * x % n;}if (!ok) {return false;}}return true;}long long gcd(long long x, long long y) {if (y == 0) {return x;}return gcd(y, x % y);}unsigned int xorshift() {static unsigned int x = 123456789, y = 362436069, z = 521288629, w = 88675123;unsigned int t = (x ^ (x << 11));x = y;y = z;z = w;return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)));}long long Pollard(long long n) {if (n % 2 == 0) {return 2LL;}if (MillerRabin(n)) {return n;}long long i = 0;while (true) {long long r = xorshift();auto f = [&](auto f, long long x) -> long long {return (__int128_t(x) * x + r) % n;};i++;long long x = i, y = f(f, x);while (true) {long long p = gcd(y - x + n, n);if (p == 0 || p == n) {break;}if (p != 1) {return p;}x = f(f, x);y = f(f, f(f, y));}}}map<long long, int> mp;int prime_factorize(long long n) {if (n == 1) {return 0;}long long p = Pollard(n);if (p == n) {return mp[n] = 1;}if (mp[n] > 0) {return mp[n];}int l = prime_factorize(p);int r = prime_factorize(n / p);int res = l + r;return mp[n] = res;}int main() {int q;cin >> q;while (q--) {long long a;cin >> a;cout << (prime_factorize(a) == 3 ? "Yes" : "No") << endl;}}