結果
問題 | No.2751 429-like Number |
ユーザー |
![]() |
提出日時 | 2024-05-11 11:07:19 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 208 ms / 4,000 ms |
コード長 | 6,073 bytes |
コンパイル時間 | 1,872 ms |
コンパイル使用メモリ | 205,352 KB |
最終ジャッジ日時 | 2025-02-21 13:34:18 |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 6 |
other | AC * 22 |
ソースコード
//// Pollard のロー素因数分解法//// cf:// 素因数分解を O(n^(1/4)) でする (Kiri)// https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98//// verifed:// Yosupo Judge Factorize// https://judge.yosupo.jp/problem/factorize//#include <bits/stdc++.h>using namespace std;//------------------------------//// Prime Functions//------------------------------//// montgomery modint (MOD < 2^62, MOD is odd)struct MontgomeryModInt64 {using mint = MontgomeryModInt64;using u64 = uint64_t;using u128 = __uint128_t;// static menberstatic u64 MOD;static u64 INV_MOD; // INV_MOD * MOD ≡ 1 (mod 2^64)static u64 T128; // 2^128 (mod MOD)// inner valueu64 val;// constructorMontgomeryModInt64() : val(0) { }MontgomeryModInt64(long long v) : val(reduce((u128(v) + MOD) * T128)) { }u64 get() const {u64 res = reduce(val);return res >= MOD ? res - MOD : res;}// mod getter and setterstatic u64 get_mod() { return MOD; }static void set_mod(u64 mod) {assert(mod < (1LL << 62));assert((mod & 1));MOD = mod;T128 = -u128(mod) % mod;INV_MOD = get_inv_mod();}static u64 get_inv_mod() {u64 res = MOD;for (int i = 0; i < 5; ++i) res *= 2 - MOD * res;return res;}static u64 reduce(const u128 &v) {return (v + u128(u64(v) * u64(-INV_MOD)) * MOD) >> 64;}// arithmetic operatorsmint operator + () const { return mint(*this); }mint operator - () const { return mint() - mint(*this); }mint operator + (const mint &r) const { return mint(*this) += r; }mint operator - (const mint &r) const { return mint(*this) -= r; }mint operator * (const mint &r) const { return mint(*this) *= r; }mint operator / (const mint &r) const { return mint(*this) /= r; }mint& operator += (const mint &r) {if ((val += r.val) >= 2 * MOD) val -= 2 * MOD;return *this;}mint& operator -= (const mint &r) {if ((val += 2 * MOD - r.val) >= 2 * MOD) val -= 2 * MOD;return *this;}mint& operator *= (const mint &r) {val = reduce(u128(val) * r.val);return *this;}mint& operator /= (const mint &r) {*this *= r.inv();return *this;}mint inv() const { return pow(MOD - 2); }mint pow(u128 n) const {mint res(1), mul(*this);while (n > 0) {if (n & 1) res *= mul;mul *= mul;n >>= 1;}return res;}// other operatorsbool operator == (const mint &r) const {return (val >= MOD ? val - MOD : val) == (r.val >= MOD ? r.val - MOD : r.val);}bool operator != (const mint &r) const {return (val >= MOD ? val - MOD : val) != (r.val >= MOD ? r.val - MOD : r.val);}mint& operator ++ () {++val;if (val >= MOD) val -= MOD;return *this;}mint& operator -- () {if (val == 0) val += MOD;--val;return *this;}mint operator ++ (int) {mint res = *this;++*this;return res;}mint operator -- (int) {mint res = *this;--*this;return res;}friend istream& operator >> (istream &is, mint &x) {long long t;is >> t;x = mint(t);return is;}friend ostream& operator << (ostream &os, const mint &x) {return os << x.get();}friend mint pow(const mint &r, long long n) {return r.pow(n);}friend mint inv(const mint &r) {return r.inv();}};typename MontgomeryModInt64::u64MontgomeryModInt64::MOD, MontgomeryModInt64::INV_MOD, MontgomeryModInt64::T128;// Miller-Rabinbool MillerRabin(long long N, vector<long long> A) {using mint = MontgomeryModInt64;mint::set_mod(N);long long s = 0, d = N - 1;while (d % 2 == 0) {++s;d >>= 1;}for (auto a : A) {if (N <= a) return true;mint x = mint(a).pow(d);if (x != 1) {long long t;for (t = 0; t < s; ++t) {if (x == N - 1) break;x *= x;}if (t == s) return false;}}return true;}bool is_prime(long long N) {if (N <= 1) return false;else if (N == 2) return true;else if (N % 2 == 0) return false;else if (N < 4759123141LL)return MillerRabin(N, {2, 7, 61});elsereturn MillerRabin(N, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});}// Pollard's Rhounsigned int xor_shift_rng() {static unsigned int tx = 123456789, ty=362436069, tz=521288629, tw=88675123;unsigned int tt = (tx^(tx<<11));tx = ty, ty = tz, tz = tw;return ( tw=(tw^(tw>>19))^(tt^(tt>>8)) );}long long pollard(long long N) {if (N % 2 == 0) return 2;if (is_prime(N)) return N;using mint = MontgomeryModInt64;mint::set_mod(N);long long step = 0;while (true) {mint r = xor_shift_rng(); // random rauto f = [&](mint x) -> mint { return x * x + r; };mint x = ++step, y = f(x);while (true) {long long p = gcd((y - x).get(), N);if (p == 0 || p == N) break;if (p != 1) return p;x = f(x);y = f(f(y));}}}vector<long long> prime_factorize(long long N) {if (N == 1) return {};long long p = pollard(N);if (p == N) return {p};vector<long long> left = prime_factorize(p);vector<long long> right = prime_factorize(N / p);left.insert(left.end(), right.begin(), right.end());sort(left.begin(), left.end());return left;}int main() {int q;cin >> q;while (q--) {long long a;cin >> a;vector<long long> v = prime_factorize(a);cout << (v.size() == 3 ? "Yes" : "No") << endl;}}