結果
問題 | No.2755 行列の共役類 |
ユーザー | 👑 p-adic |
提出日時 | 2024-05-12 11:23:31 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 54,620 bytes |
コンパイル時間 | 3,854 ms |
コンパイル使用メモリ | 248,932 KB |
実行使用メモリ | 10,136 KB |
最終ジャッジ日時 | 2024-05-12 11:23:48 |
合計ジャッジ時間 | 15,755 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 12 ms
6,944 KB |
testcase_04 | AC | 15 ms
6,940 KB |
testcase_05 | AC | 8 ms
6,940 KB |
testcase_06 | AC | 5 ms
6,940 KB |
testcase_07 | AC | 14 ms
6,940 KB |
testcase_08 | AC | 8 ms
6,944 KB |
testcase_09 | AC | 6 ms
6,944 KB |
testcase_10 | AC | 4 ms
6,940 KB |
testcase_11 | AC | 3 ms
6,940 KB |
testcase_12 | AC | 3 ms
6,940 KB |
testcase_13 | AC | 19 ms
6,940 KB |
testcase_14 | AC | 6 ms
6,940 KB |
testcase_15 | AC | 6 ms
6,944 KB |
testcase_16 | AC | 3 ms
6,940 KB |
testcase_17 | AC | 26 ms
6,940 KB |
testcase_18 | AC | 9 ms
6,940 KB |
testcase_19 | AC | 4 ms
6,944 KB |
testcase_20 | AC | 37 ms
6,944 KB |
testcase_21 | AC | 20 ms
6,940 KB |
testcase_22 | AC | 7 ms
6,944 KB |
testcase_23 | AC | 7 ms
6,944 KB |
testcase_24 | AC | 8 ms
6,940 KB |
testcase_25 | AC | 6 ms
6,940 KB |
testcase_26 | AC | 4 ms
6,944 KB |
testcase_27 | AC | 54 ms
6,944 KB |
testcase_28 | AC | 29 ms
6,944 KB |
testcase_29 | AC | 9 ms
6,940 KB |
testcase_30 | AC | 38 ms
6,944 KB |
testcase_31 | AC | 29 ms
6,944 KB |
testcase_32 | AC | 16 ms
6,940 KB |
testcase_33 | AC | 5 ms
6,944 KB |
testcase_34 | AC | 7 ms
6,940 KB |
testcase_35 | AC | 4 ms
6,944 KB |
testcase_36 | AC | 3 ms
6,944 KB |
testcase_37 | AC | 7 ms
6,940 KB |
testcase_38 | AC | 13 ms
6,940 KB |
testcase_39 | AC | 22 ms
6,940 KB |
testcase_40 | AC | 19 ms
6,940 KB |
testcase_41 | AC | 27 ms
6,940 KB |
testcase_42 | AC | 63 ms
6,940 KB |
testcase_43 | AC | 31 ms
6,944 KB |
testcase_44 | AC | 8 ms
6,940 KB |
testcase_45 | AC | 8 ms
6,940 KB |
testcase_46 | AC | 4 ms
6,940 KB |
testcase_47 | AC | 4 ms
6,940 KB |
testcase_48 | AC | 34 ms
6,940 KB |
testcase_49 | AC | 2 ms
6,944 KB |
testcase_50 | AC | 6 ms
6,940 KB |
testcase_51 | AC | 2 ms
6,940 KB |
testcase_52 | AC | 2 ms
6,940 KB |
testcase_53 | AC | 911 ms
6,944 KB |
testcase_54 | AC | 449 ms
6,944 KB |
testcase_55 | AC | 295 ms
6,944 KB |
testcase_56 | AC | 1,291 ms
6,940 KB |
testcase_57 | AC | 668 ms
6,940 KB |
testcase_58 | AC | 1,306 ms
6,944 KB |
testcase_59 | AC | 655 ms
6,944 KB |
testcase_60 | AC | 2,242 ms
10,136 KB |
testcase_61 | AC | 4 ms
6,940 KB |
testcase_62 | AC | 916 ms
6,940 KB |
testcase_63 | AC | 437 ms
6,944 KB |
testcase_64 | AC | 315 ms
6,940 KB |
testcase_65 | AC | 3 ms
6,940 KB |
ソースコード
#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN IN VO Solve() { CIN( int , B , C ); constexpr PrimeEnumeration<int,30> pe{}; auto [euler,prime,dummy] = EulerFunction( pe , B ); int d = B / C; int Bd = B * d; DynamicMod::SetModulo( B , euler - 1 ); using T = T2<DynamicMod>; auto EnumBd = [&]( const int& i ){ return T{ i , DynamicMod::Derepresent( i / B * C ) }; }; auto EnumBd_inv = [&]( const T& t ){ return int( t.first.Represent() + t.second.Represent() / C * B ); }; auto prod = [&]( T&& t0 , const T& t1 ){ auto& [a,b] = t0; auto& [c,d] = t1; b += a * d; a *= c; return move( t0 ); }; auto inv = [&]( const T& t ){ auto& [a,b] = t; auto a_inv = 1 / a; return T{ a_inv , - ( a_inv * b ) }; }; auto edge = [&]( const T& t ){ vector<T> answer{}; FOR( i , 0 , Bd ){ auto u = EnumBd( i ); bool coprime = true; auto&& n = u.first.Represent(); RUN( p , prime ){ if( !( coprime &= n % p != 0 ) ){ break; } } if( coprime ){ answer.push_back( prod( prod( inv( u ) , t ) , u ) ); } } return answer; }; vector<bool> found( Bd ); int answer = 0; CEXPR( int , bound_answer , 100 ); FOR( i , 0 , Bd ){ if( found[i] ){ continue; } auto t = EnumBd( i ); auto& [a,b] = t; bool coprime = true; auto&& n = a.Represent(); RUN( p , prime ){ if( !( coprime &= n % p != 0 ) ){ break; } } if( coprime ){ if( ++answer > bound_answer ){ cout << bound_answer << "+\n"; return; } RUN( u , edge( t ) ){ auto&& j = EnumBd_inv( u ); found[j] = true; } } } RETURN( answer ); } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // COMPAREに使用。圧縮時は削除する。 ll Naive( ll N , ll M , ll K ) { ll answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 IN VO Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } // 圧縮時は中身だけ削除する。 IN VO SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // } } // 圧縮時は中身だけ削除する。 IN VO RandomTest() { // CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N ); // CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M ); // CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K ); // COMPARE( N , M , N ); } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* AdicExhausiveSearch/BFS (11KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/AdicExhausiveSearch/compress.txt CommutativeDualSqrtDecomposition (6KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/Dual/Commutative/compress.txt CoordinateCompress (3KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt DFSOnTree (11KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/compress.txt DifferenceSequence (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/DifferenceSequence/compress.txt Divisor/Prime (4KB) c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt IntervalAddBIT (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt IntervalMaxBIT (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalMax/compress.txt IntervalMultiplyLazySqrtDecomposition (18KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/LazyEvaluation/IntervalMultiply/compress.txt Knapsack (8KB) c:/Users/user/Documents/Programming/Mathematics/Combinatorial/KnapsackProblem/compress.txt MinimumCostFlow/PotentialisedDijkstra/Dijkstra (16KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/Dijkstra/Potentialised/MinimumCostFlow/compress.txt Polynomial (21KB) c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt TwoByOneMatrix/TwoByTwoMatrix (9KB) C:/Users/user/Documents/Programming/Mathematics/LinearAlgebra/TwoByOne/compress.txt UnionFind (3KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt */ // VVV 常設でないライブラリは以下に挿入する。 #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/Function/Euler/a_Body.hpp" #else // nのオイラー関数値:EulerFunction(CO PrimeEnumeration<INT1,val_limit,LE_max>& prime,CO INT2& n); // n_max以下のnのオイラー関数値:TotalEulerFunction(CO PrimeEnumeration<INT1,val_limit,LE_max>& prime,CO INT2& n_max); // val_limitは(nの上限の平方根+1)以上に設定。 TE <TY INT,INT val_limit,int LE_max = val_limit>CL PrimeEnumeration{PU:bool m_is_composite[val_limit];INT m_val[LE_max];int m_LE;CE PrimeEnumeration();IN CO INT& OP[](CRI i)CO;CE CO INT& Get(CRI i)CO;CE CO bool& IsComposite(CRI n)CO;CE CRI LE()CO NE;}; TE <TY INT,INT val_limit,int LE_max> CE PrimeEnumeration<INT,val_limit,LE_max>::PrimeEnumeration():m_is_composite(),m_val(),m_LE(0){for(INT i = 2;i < val_limit;i++){if(! m_is_composite[i]){if(i <=(val_limit - 1)/ i){for(INT j = i * i;j < val_limit;j += i){m_is_composite[j]= true;}}m_val[m_LE++]= i;if(m_LE >= LE_max){break;}}}}TE <TY INT,INT val_limit,int LE_max> IN CO INT& PrimeEnumeration<INT,val_limit,LE_max>::OP[](CRI i)CO{AS(0 <= i && i < m_LE);RE m_val[i];}TE <TY INT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::Get(CRI i)CO{RE m_val[i];}TE <TY INT,INT val_limit,int LE_max> CE CO bool& PrimeEnumeration<INT,val_limit,LE_max>::IsComposite(CRI n)CO{RE m_is_composite[n];}TE <TY INT,INT val_limit,int LE_max> CE CRI PrimeEnumeration<INT,val_limit,LE_max>::LE()CO NE{RE m_LE;} TE <TY INT1,INT1 val_limit,int LE_max,TY INT2>pair<VE<INT1>,VE<int>> PrimeFactorisation(CO PrimeEnumeration<INT1,val_limit,LE_max>& pe,INT2 n){VE<INT1> P{};VE<int> E{};CRI LE = pe.LE();for(int i = 0;i < LE;i++){CO INT1& p = pe[i];if(n % p == 0){int e = 1;WH((n /= p)% p == 0){e++;}P.push_back(p);E.push_back(e);}else if(n / p < p){break;}}if(n != 1){P.push_back(n);E.push_back(1);}RE{MO(P),MO(E)};}TE <TY INT1,INT1 val_limit,int LE_max,TY INT2>tuple<VE<INT1>,VE<int>,VE<INT2>> PrimePWFactorisation(CO PrimeEnumeration<INT1,val_limit,LE_max>& pe,INT2 n){VE<INT1> P{};VE<int> E{};VE<INT2> Q{};CRI LE = pe.LE();for(int i = 0;i < LE;i++){CO INT1& p = pe[i];if(n % p == 0){int e = 1;INT2 q = p;WH((n /= p)% p == 0){e++;q *= p;}P.push_back(p);E.push_back(e);Q.push_back(q);}else if(n / p < p){break;}}if(n != 1){P.push_back(n);E.push_back(1);Q.push_back(n);}RE{MO(P),MO(E),MO(Q)};} TE <TY PF,TY INT>tuple<INT,VE<INT>,VE<int>> EulerFunction_Body(PF pf,CO INT& n){auto[P,E]= pf(n);INT AN = n;for(auto& p:P){AN -= AN / p;}RE{AN,MO(P),MO(E)};}TE <TY INT1,INT1 val_limit,int LE_max,TY INT2> IN tuple<INT2,VE<INT1>,VE<int>> EulerFunction(CO PrimeEnumeration<INT1,val_limit,LE_max>& pe,CO INT2& n){RE EulerFunction_Body([&](CRI i){RE PrimeFactorisation(pe,i);},n);}TE <TY INT1,INT1 val_limit,int LE_max,int SZ,TY INT2>VE<INT2> TotalEulerFunction(CO PrimeEnumeration<INT1,val_limit,LE_max>& pe,CO INT2& n_max){VE<INT2> AN(n_max + 1);for(INT2 n = 1;n <= n_max;n++){AN[n]= n;}auto quotient = AN;CRI LE = pe.LE();for(int i = 0;i < LE;i++){CO INT2& p_i = pe[i];INT2 n = 0;WH((n += p_i)<= n_max){INT2& AN_n = AN[n];INT2& quotient_n = quotient[n];AN_n -= AN_n / p_i;WH((quotient_n /= p_i)% p_i == 0){}}}for(INT2 n = val_limit;n <= n_max;n++){CO INT2& quotient_n = quotient[n];if(quotient_n != 1){INT2& AN_n = AN[n];AN_n -= AN_n / quotient_n;}}RE AN;} #endif #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/DynamicModulo/Debug/a_Body.hpp" #else TE <TY INT1,TY INT2> CE INT1 RS(INT1 n,CO INT2& M)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < M?n:n %= M);} TE <int NUM> CL DynamicMods;TE <int NUM>CL COantsForDynamicMods{PU:COantsForDynamicMods()= delete;ST uint g_M;ST uint g_M_minus;ST int g_order_minus_1;ST int g_order_minus_1_neg;ST bool g_M_is_prime;}; TE <int NUM> uint COantsForDynamicMods<NUM>::g_M = 0;TE <int NUM> uint COantsForDynamicMods<NUM>::g_M_minus = -1;TE <int NUM> int COantsForDynamicMods<NUM>::g_order_minus_1 = 0;TE <int NUM> int COantsForDynamicMods<NUM>::g_order_minus_1_neg = 0;TE <int NUM> bool COantsForDynamicMods<NUM>::g_M_is_prime = false; #define DC_OF_CM_FOR_DYNAMIC_MOD(OPR)IN bool OP OPR(CO DynamicMods<NUM>& n)CO NE #define DC_OF_AR_FOR_DYNAMIC_MOD(OPR,EX)IN DynamicMods<NUM> OP OPR(DynamicMods<NUM> n)CO EX; #define DF_OF_CM_FOR_DYNAMIC_MOD(OPR)TE <int NUM> IN bool DynamicMods<NUM>::OP OPR(CO DynamicMods<NUM>& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_DYNAMIC_MOD(OPR,EX,LEFT,OPR2)TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::OP OPR(DynamicMods<NUM> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <int NUM,TY T> IN DynamicMods<NUM> OP OPR(T n0,CO DynamicMods<NUM>& n1)EX{RE MO(DynamicMods<NUM>(MO(n0))OPR ## = n1);} TE <int NUM>CL DynamicMods{PU:uint m_n;IN DynamicMods()NE;IN DynamicMods(CO DynamicMods<NUM>& n)NE;IN DynamicMods(DynamicMods<NUM>&& n)NE;TE <TY T> IN DynamicMods(T n)NE;IN DynamicMods<NUM>& OP=(DynamicMods<NUM> n)NE;IN DynamicMods<NUM>& OP+=(CO DynamicMods<NUM>& n)NE;IN DynamicMods<NUM>& OP-=(CO DynamicMods<NUM>& n)NE;IN DynamicMods<NUM>& OP*=(CO DynamicMods<NUM>& n)NE;IN DynamicMods<NUM>& OP/=(DynamicMods<NUM> n);TE <TY INT> IN DynamicMods<NUM>& OP<<=(INT n);TE <TY INT> IN DynamicMods<NUM>& OP>>=(INT n);IN DynamicMods<NUM>& OP++()NE;IN DynamicMods<NUM> OP++(int)NE;IN DynamicMods<NUM>& OP--()NE;IN DynamicMods<NUM> OP--(int)NE;DC_OF_CM_FOR_DYNAMIC_MOD(==);DC_OF_CM_FOR_DYNAMIC_MOD(!=);DC_OF_CM_FOR_DYNAMIC_MOD(<);DC_OF_CM_FOR_DYNAMIC_MOD(<=);DC_OF_CM_FOR_DYNAMIC_MOD(>);DC_OF_CM_FOR_DYNAMIC_MOD(>=);DC_OF_AR_FOR_DYNAMIC_MOD(+,NE);DC_OF_AR_FOR_DYNAMIC_MOD(-,NE);DC_OF_AR_FOR_DYNAMIC_MOD(*,NE);DC_OF_AR_FOR_DYNAMIC_MOD(/,);TE <TY INT> IN DynamicMods<NUM> OP^(INT EX)CO;TE <TY INT> IN DynamicMods<NUM> OP<<(INT n)CO;TE <TY INT> IN DynamicMods<NUM> OP>>(INT n)CO;IN DynamicMods<NUM> OP-()CO NE;IN DynamicMods<NUM>& SignInvert()NE;IN DynamicMods<NUM>& Invert();TE <TY INT> IN DynamicMods<NUM>& PW(INT EX);IN VO swap(DynamicMods<NUM>& n)NE;IN CRUI RP()CO NE;ST IN DynamicMods<NUM> DeRP(uint n)NE;ST IN CO DynamicMods<NUM>& Inverse(CRUI n);ST IN CO DynamicMods<NUM>& Factorial(CRUI n);ST IN CO DynamicMods<NUM>& FactorialInverse(CRUI n);ST IN DynamicMods<NUM> Combination(CRUI n,CRUI i);ST IN CO DynamicMods<NUM>& zero()NE;ST IN CO DynamicMods<NUM>& one()NE;ST IN CRUI GetModulo()NE;ST IN VO SetModulo(CRUI M,CRI order_minus_1 = -1)NE;TE <TY INT> IN DynamicMods<NUM>& PositivePW(INT EX)NE;TE <TY INT> IN DynamicMods<NUM>& NonNegativePW(INT EX)NE;US COants = COantsForDynamicMods<NUM>;}; US DynamicMod = DynamicMods<0>; TE <int NUM> IN DynamicMods<NUM>::DynamicMods()NE:m_n(){}TE <int NUM> IN DynamicMods<NUM>::DynamicMods(CO DynamicMods<NUM>& n)NE:m_n(n.m_n){}TE <int NUM> IN DynamicMods<NUM>::DynamicMods(DynamicMods<NUM>&& n)NE:m_n(MO(n.m_n)){}TE <int NUM> TE <TY T> IN DynamicMods<NUM>::DynamicMods(T n)NE:m_n(RS(uint(MO(n)),COants::g_M)){ST_AS(is_COructible_v<uint,decay_t<T> >);}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP=(DynamicMods<NUM> n)NE{m_n = MO(n.m_n);RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP+=(CO DynamicMods<NUM>& n)NE{(m_n += n.m_n)< COants::g_M?m_n:m_n -= COants::g_M;RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP-=(CO DynamicMods<NUM>& n)NE{m_n < n.m_n?(m_n += COants::g_M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP*=(CO DynamicMods<NUM>& n)NE{m_n = RS(MO(ull(m_n)* n.m_n),COants::g_M);RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP/=(DynamicMods<NUM> n){RE OP*=(n.Invert());}TE <int NUM> TE <TY INT> IN DynamicMods<NUM>& DynamicMods<NUM>::OP<<=(INT n){AS(n >= 0);RE *TH *= DynamicMods<NUM>(2).NonNegativePW(MO(n));}TE <int NUM> TE <TY INT> IN DynamicMods<NUM>& DynamicMods<NUM>::OP>>=(INT n){AS(n >= 0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += COants::g_M)>>= 1;}RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::OP++(int)NE{DynamicMods<NUM> n{*TH};OP++();RE n;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::OP--(int)NE{DynamicMods<NUM> n{*TH};OP--();RE n;}DF_OF_CM_FOR_DYNAMIC_MOD(==);DF_OF_CM_FOR_DYNAMIC_MOD(!=);DF_OF_CM_FOR_DYNAMIC_MOD(>);DF_OF_CM_FOR_DYNAMIC_MOD(>=);DF_OF_CM_FOR_DYNAMIC_MOD(<);DF_OF_CM_FOR_DYNAMIC_MOD(<=);DF_OF_AR_FOR_DYNAMIC_MOD(+,NE,n,+);DF_OF_AR_FOR_DYNAMIC_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_DYNAMIC_MOD(*,NE,n,*);DF_OF_AR_FOR_DYNAMIC_MOD(/,,n.Invert(),*);TE <int NUM> TE <TY INT> IN DynamicMods<NUM> DynamicMods<NUM>::OP^(INT EX)CO{RE MO(DynamicMods<NUM>(*TH).PW(MO(EX)));}TE <int NUM> TE <TY INT> IN DynamicMods<NUM> DynamicMods<NUM>::OP<<(INT n)CO{RE MO(DynamicMods<NUM>(*TH)<<= MO(n));}TE <int NUM> TE <TY INT> IN DynamicMods<NUM> DynamicMods<NUM>::OP>>(INT n)CO{RE MO(DynamicMods<NUM>(*TH)>>= MO(n));}TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::OP-()CO NE{RE MO(DynamicMods<NUM>(*TH).SignInvert());}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::SignInvert()NE{m_n > 0?m_n = COants::g_M - m_n:m_n;RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::Invert(){RE m_n <(COants::g_M_is_prime?1e6:3e4)?*TH = Inverse(m_n):NonNegativePW(COants::g_order_minus_1);}TE <int NUM> TE <TY INT> IN DynamicMods<NUM>& DynamicMods<NUM>::PositivePW(INT EX)NE{DynamicMods<NUM> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <int NUM> TE <TY INT> IN DynamicMods<NUM>& DynamicMods<NUM>::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE <int NUM> TE <TY INT> IN DynamicMods<NUM>& DynamicMods<NUM>::PW(INT EX){bool neg = EX < 0;RE neg?PositivePW(MO(EX *= COants::g_order_minus_1_neg)):NonNegativePW(MO(EX));}TE <int NUM> IN VO DynamicMods<NUM>::swap(DynamicMods<NUM>& n)NE{std::swap(m_n,n.m_n);}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::Inverse(CRUI n){ST VE<DynamicMods<NUM>> memory ={zero(),one()};ST uint LE_curr = 2;AS(0 < n && n < COants::g_M);WH(LE_curr <= n){memory.push_back(COants::g_M_is_prime?DeRP(COants::g_M - memory[COants::g_M % LE_curr].m_n * ull(COants::g_M / LE_curr)% COants::g_M):DeRP(n).NonNegativePW(COants::g_order_minus_1));LE_curr++;}RE memory[n];}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::Factorial(CRUI n){ST VE<DynamicMods<NUM>> memory ={one(),one()};ST uint LE_curr = 2;if(COants::g_M <= n){RE zero();}WH(LE_curr <= n && memory.back().m_n != 0){memory.push_back(memory.back()* DeRP(LE_curr));LE_curr++;}RE LE_curr <= n?memory.back():memory[n];}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::FactorialInverse(CRUI n){ST VE<DynamicMods<NUM>> memory ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(memory[LE_curr - 1]* Inverse(LE_curr));LE_curr++;}RE memory[n];}TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::Combination(CRUI n,CRUI i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE <int NUM> IN CRUI DynamicMods<NUM>::RP()CO NE{RE m_n;}TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::DeRP(uint n)NE{DynamicMods<NUM> n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::zero()NE{ST CO DynamicMods<NUM> z{};RE z;}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::one()NE{ST CO DynamicMods<NUM> o{1};RE o;}TE <int NUM> IN CRUI DynamicMods<NUM>::GetModulo()NE{RE COants::g_M;}TE <int NUM> IN VO DynamicMods<NUM>::SetModulo(CRUI M,CRI order_minus_1)NE{COants::g_M = M;COants::g_M_minus = M - 1;COants::g_order_minus_1 = order_minus_1 == -1?M - 2:order_minus_1;COants::g_order_minus_1_neg = -COants::g_order_minus_1;COants::g_M_is_prime = order_minus_1 == -1;}TE <int NUM> IN DynamicMods<NUM> Inverse(CO DynamicMods<NUM>& n){RE MO(DynamicMods<NUM>(n).Invert());}TE <int NUM,TY INT> IN DynamicMods<NUM> PW(DynamicMods<NUM> n,INT EX){RE MO(n.PW(MO(EX)));}TE <int NUM> IN VO swap(DynamicMods<NUM>& n0,DynamicMods<NUM>& n1)NE{n0.swap(n1);}TE <int NUM> IN string to_string(CO DynamicMods<NUM>& n)NE{RE to_string(n.RP())+ " + " + to_string(DynamicMods<NUM>::GetModulo())+ "Z";}TE <int NUM,CL Traits> IN IS& OP>>(IS& is,DynamicMods<NUM>& n){ll m;is >> m;n = m;RE is;}TE <int NUM,CL Traits> IN OS& OP<<(OS& os,CO DynamicMods<NUM>& n){RE os << n.RP();} TE <int NUM> DC_OF_HASH( DynamicMods<NUM> );TE <int NUM> DF_OF_HASH_FOR_MOD( DynamicMods<NUM> ); TE <TY INT1,TY INT2>INT1 GCD(CO INT1& b_0,CO INT2& b_1){INT1 a_0 = b_0 < 0?-b_0:b_0;INT1 a_1 = b_1 < 0?-b_1:b_1;WH(a_1 != 0){swap(a_0 %= a_1,a_1);}RE a_0;}TE <TY INT1,TY INT2> IN INT1 LCM(CO INT1& b_0,CO INT2& b_1){RE(b_0 == 0 && b_1 == 0)?0:(b_0 / GCD(b_0,b_1))* b_1;} #endif #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/QuotientSet/a_Body.hpp" #else TE <TY T,TY GRAPH>CL QuotientSetSearch{PU:GRAPH& m_G;T m_not_found;VE<T> m_next;VE<bool> m_found;VE<T> m_repr;IN QuotientSetSearch(GRAPH& G,CO T& not_found);TE <TY Arg> IN QuotientSetSearch(GRAPH& G,CO T& not_found,Arg&& init);IN VO Initialise();IN VO Initialise(CO T& init);IN VO Initialise(VE<T> inits);IN VO Shift(CO T& init);IN VO Shift(VE<T> inits);IN CRI SZ()CO NE;IN VE<bool>::reference found(CO T& t);IN CO T& repr(CO T& t);IN T Next();pair<CO VE<T>&,int> Get();}; TE <TY T,TY GRAPH> IN QuotientSetSearch<T,GRAPH>::QuotientSetSearch(GRAPH& G,CO T& not_found):m_G(G),m_not_found(not_found),m_next(),m_found(),m_repr(){Initialise();}TE <TY T,TY GRAPH> TE <TY Arg> IN QuotientSetSearch<T,GRAPH>::QuotientSetSearch(GRAPH& G,CO T& not_found,Arg&& init):QuotientSetSearch<T,GRAPH>(G,not_found){Initialise(forward<Arg>(init));}TE <TY T,TY GRAPH> IN VO QuotientSetSearch<T,GRAPH>::Initialise(){ST_AS(is_same_v<inner_t<GRAPH>,T> && !is_same_v<GRAPH,MemorisationGraph<T,decldecay_t(m_G.edge())>>);CRI V = SZ();m_next.clear();m_found = VE<bool>(V);m_repr = VE<T>(V);for(int i = 0;i < V;i++){m_repr[i]= m_G.Enumeration(i);}}TE <TY T,TY GRAPH> IN VO QuotientSetSearch<T,GRAPH>::Initialise(CO T& init){auto&& i = m_G.Enumeration_inv(init);AS(0 <= i && i < SZ());Initialise();m_next.push_back(init);}TE <TY T,TY GRAPH> IN VO QuotientSetSearch<T,GRAPH>::Initialise(VE<T> inits){Initialise();m_next = MO(inits);CRI V = SZ();for(auto& u:m_next){auto&& i = m_G.Enumeration_inv(u);AS(0 <= i && i < V);}}TE <TY T,TY GRAPH> IN VO QuotientSetSearch<T,GRAPH>::Shift(CO T& init){m_next ={init};}TE <TY T,TY GRAPH> IN VO QuotientSetSearch<T,GRAPH>::Shift(VE<T> inits){m_next = MO(inits);}TE <TY T,TY GRAPH> IN CRI QuotientSetSearch<T,GRAPH>::SZ()CO NE{RE m_G.SZ();}TE <TY T,TY GRAPH> IN VE<bool>::reference QuotientSetSearch<T,GRAPH>::found(CO T& t){auto&& i = m_G.Enumeration_inv(t);AS(0 <= i && i < SZ());RE m_found[i];}TE <TY T,TY GRAPH> IN CO T& QuotientSetSearch<T,GRAPH>::repr(CO T& t){auto&& i = m_G.Enumeration_inv(t);AS(0 <= i && i < SZ());RE m_repr[i];}TE <TY T,TY GRAPH> IN T QuotientSetSearch<T,GRAPH>::Next(){if(m_next.empty()){RE m_not_found;}CO T t_curr = m_next.back();m_next.pop_back();auto&& i_curr = m_G.Enumeration_inv(t_curr);auto&& found_i_curr = m_found[i_curr];if(found_i_curr){RE Next();}found_i_curr = true;for(auto& t:m_G.Edge(t_curr)){auto&& i = m_G.Enumeration_inv(t);auto&& found_i = m_found[i];T& repr_i = m_repr[i];if(found_i){AS(repr_i == t_curr);}else{AS(repr_i == t);found_i = true;repr_i = t_curr;}}RE t_curr;}TE <TY T,TY GRAPH>pair<CO VE<T>&,int> QuotientSetSearch<T,GRAPH>::Get(){CRI V = SZ();int count = 0;m_next.clear();for(int i = 0;i < V;i++){if(!m_found[i]){count++;m_next.push_back(m_G.Enumeration(i));Next();}}RE{m_repr,MO(count)};} #endif // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifndef DEBUG #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( N , ... ) SOLVE_ONLY; VariadicResize( N , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A , __VA_ARGS__ ); } #define CIN_A( LL , N , ... ) VE<LL> __VA_ARGS__; SET_A( N , __VA_ARGS__ ); #endif #include <bits/stdc++.h> using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N ); SET_A_ASSERT( N , A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( VAR , ... ) for( auto&& VAR : __VA_ARGS__ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream<char,Traits> #define OS basic_ostream<char,Traits> #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin #define reSZ resize // 型のエイリアス #define decldecay_t(VAR)decay_t<decltype(VAR)> TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...)); TE <TY T> US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE <TY INT> US T2 = pair<INT,INT>; TE <TY INT> US T3 = tuple<INT,INT,INT>; TE <TY INT> US T4 = tuple<INT,INT,INT,INT>; US path = pair<int,ll>; // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ ST_AS( ! is_same<decldecay_t( CO_TARGET ),uint>::value && ! is_same<decldecay_t( CO_TARGET ),ull>::value ); \ ll ANSWER = MINIMUM; \ { \ ll L_BS = MINIMUM; \ ll U_BS = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ CO ll CO_TARGET_BS = ( CO_TARGET ); \ ll DIFFERENCE_BS; \ WH( L_BS < U_BS ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \ CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS : (" , #EXPRESSION , ") =" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "= (" , #CO_TARGET , ")" ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ U_BS = UPDATE_U; \ } else { \ L_BS = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( L_BS > U_BS ){ \ CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":= (" , #MAXIMUM , ") + 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果: (" , #EXPRESSION , ") =" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ) , CO_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":= (" , #MAXIMUM , ") + 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // 尺取り法用 // VAR_TPA_LとVAR_TPA_RをINITで初期化し、VAR_TPA_RがCONTINUE_CONDITIONを満たす限り、 // 閉区間[VAR_TPA_L,VAR_TPA_R]が条件ON_CONDITIONを満たすか否かを判定し、 // trueになるかVAR_TAR_LがVAR_TAR_Rに追い付くまでVAR_TPA_Lの更新操作UPDATE_Lを繰り返し、 // その後VAR_TPA_Rの更新操作UPDATE_Rを行う。 // ON_CONDITIONがtrueとなる極大閉区間とその時点でのINFOをANSWERに格納する。 #define TPA( ANSWER , VAR_TPA , INIT , CONTINUE_CONDITION , UPDATE_L , UPDATE_R , ON_CONDITION , INFO ) \ VE<tuple<decldecay_t( INIT ),decldecay_t( INIT ),decldecay_t( INFO )>> ANSWER{}; \ { \ auto init_TPA = INIT; \ decldecay_t( ANSWER.front() ) ANSWER ## _temp = { init_TPA , init_TPA , INFO }; \ auto ANSWER ## _prev = ANSWER ## _temp; \ auto& VAR_TPA ## _L = get<0>( ANSWER ## _temp ); \ auto& VAR_TPA ## _R = get<1>( ANSWER ## _temp ); \ auto& VAR_TPA ## _info = get<2>( ANSWER ## _temp ); \ bool on_TPA_prev = false; \ WH( true ){ \ bool continuing = CONTINUE_CONDITION; \ bool on_TPA = continuing && ( ON_CONDITION ); \ CERR( continuing ? "尺取り中" : "尺取り終了" , ": [L,R] = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , "] ," , on_TPA_prev ? "on" : "off" , "->" , on_TPA ? "on" : "off" , ", info =" , VAR_TPA ## _info ); \ if( on_TPA_prev && ! on_TPA ){ \ ANSWER.push_back( ANSWER ## _prev ); \ } \ if( continuing ){ \ if( on_TPA || VAR_TPA ## _L == VAR_TPA ## _R ){ \ ANSWER ## _prev = ANSWER ## _temp; \ UPDATE_R; \ } else { \ UPDATE_L; \ } \ } else { \ break; \ } \ on_TPA_prev = on_TPA; \ } \ } \ // データ構造用 TE <TY T> IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;} TE <TY T> IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;} TE <TY T> IN T MU(CO T& t0,CO T& t1){RE t0 * t1;} TE <TY T> IN CO T& Zero(){ST CO T z{};RE z;} TE <TY T> IN CO T& One(){ST CO T o = 1;RE o;}TE <TY T> IN T AdditionInv(CO T& t){RE -t;} TE <TY T> IN T Id(CO T& v){RE v;} TE <TY T> IN T Min(CO T& a,CO T& b){RE a < b?a:b;} TE <TY T> IN T Max(CO T& a,CO T& b){RE a < b?b:a;} // グラフ用 TE <TY V> IN auto Get(V& a){RE[&](CRI i = 0)->CO decldecay_t(a[0])&{RE a[i];};} TE <TY T = int> IN VE<T> id(CRI SZ){VE<T> AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;} // グリッド問題用 int H,W,H_minus,W_minus,HW; VE<string> grid; char walkable = '.',unwalkable = '#'; IN T2<int> EnumHW(CRI v){RE{v / W,v % W};} IN int EnumHW_inv(CO T2<int>& ij){auto&[i,j]= ij;RE i * W + j;} CO string direction[4]={"U","R","D","L"}; IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE i<k?2:i>k?0:j<h?1:j>h?3:(AS(false),-1);} IN int DirectionNumberOnGrid(CRI v,CRI w){auto[i,j]=EnumHW(v);auto[k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);} IN int ReverseDirectionNumberOnGrid(CRI n){AS(0<=n&&n<4);RE(n+2)%4;} IN VE<T2<int>> EdgeOnGrid(CO T2<int>& v){VE<T2<int>>AN{};auto[i,j]=v;if(i>0&&grid[i-1][j]==walkable){AN.push_back({i-1,j});}if(i+1<H&&grid[i+1][j]==walkable){AN.push_back({i+1,j});}if(j>0&&grid[i][j-1]==walkable){AN.push_back({i,j-1});}if(j+1<W&&grid[i][j+1]==walkable){AN.push_back({i,j+1});}RE AN;} IN VE<pair<T2<int>,ll>> WEdgeOnGrid(CO T2<int>& v){VE<pair<T2<int>,ll>>AN{};auto[i,j]=v;if(i>0&&grid[i-1][j]==walkable){AN.push_back({{i-1,j},1});}if(i+1<H&&grid[i+1][j]==walkable){AN.push_back({{i+1,j},1});}if(j>0&&grid[i][j-1]==walkable){AN.push_back({{i,j-1},1});}if(j+1<W&&grid[i][j+1]==walkable){AN.push_back({{i,j+1},1});}RE AN;} IN VO SetWallStringOnGrid(CRI i,VE<string>& S){if(S.empty()){S.reSZ(H);}cin>>S[i];AS(int(S[i].SZ())==W);} // VVV 常設ライブラリは以下に挿入する。 #ifdef DEBUG #include "C:/Users/user/Documents/Programming/Contest/Template/include/a_Body.hpp" #else // Random(1KB) ll GetRand(CRI Rand_min,CRI Rand_max){ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;} // Set (1KB) #define DC_OF_HASH(...)struct hash<__VA_ARGS__>{IN size_t OP()(CO __VA_ARGS__& n)CO;}; CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;}; TE <TY T>US Set = conditional_t<is_COructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,VO>>;TE <TY T,TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>; // Tuple(3KB) #define DF_OF_OP_FOR_TUPLE(OPR)TE <TY T,TY U,TE <TY...> TY V> IN auto OP OPR ## =(V<T,U>& t0,CO V<T,U>& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);RE t0;}TE <TY T,TY U,TY V> IN tuple<T,U,V>& OP OPR ## =(tuple<T,U,V>& t0,CO tuple<T,U,V>& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);RE t0;}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W>& OP OPR ## =(tuple<T,U,V,W>& t0,CO tuple<T,U,V,W>& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);get<3>(t0)OPR ## = get<3>(t1);RE t0;}TE <TE <TY...> TY V,TY...ARGS> IN auto OP OPR(CO V<ARGS...>& t0,CO V<ARGS...>& t1)-> decldecay_t((get<0>(t0),t0)){auto t = t0;RE MO(t OPR ## = t1);} #define DF_OF_HASH_FOR_TUPLE(PAIR)TE <TY T,TY U> IN size_t hash<PAIR<T,U>>::OP()(CO PAIR<T,U>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<T> h0;ST CO hash<U> h1;RE(h0(get<0>(n))* seed)^ h1(get<1>(n));} #define DF_OF_INCREMENT_FOR_TUPLE(INCR)TE <TY T,TY U,TE <TY...> TY V> IN auto OP INCR(V<T,U>& t)-> decldecay_t((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);RE t;}TE <TY T,TY U,TY V> IN tuple<T,U,V>& OP INCR(tuple<T,U,V>& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);RE t;}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W>& OP INCR(tuple<T,U,V,W>& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);INCR get<3>(t);RE t;} TE <CL Traits,TY T,TY U,TE <TY...> TY V> IN auto OP>>(IS& is,V<T,U>& arg)-> decltype((get<0>(arg),is))&{RE is >> get<0>(arg)>> get<1>(arg);}TE <CL Traits,TY T,TY U,TY V> IN IS& OP>>(IS& is,tuple<T,U,V>& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg);}TE <CL Traits,TY T,TY U,TY V,TY W> IN IS& OP>>(IS& is,tuple<T,U,V,W>& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg)>> get<3>(arg);}TE <CL Traits,TY T,TY U,TE <TY...> TY V> IN auto OP<<(OS& os,CO V<T,U>& arg)-> decltype((get<0>(arg),os))&{RE os << get<0>(arg)<< " " << get<1>(arg);}TE <CL Traits,TY T,TY U,TY V> IN OS& OP<<(OS& os,CO tuple<T,U,V>& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg);}TE <CL Traits,TY T,TY U,TY V,TY W> IN OS& OP<<(OS& os,CO tuple<T,U,V,W>& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg)<< " " << get<3>(arg);}DF_OF_OP_FOR_TUPLE(+);DF_OF_OP_FOR_TUPLE(-);DF_OF_OP_FOR_TUPLE(*);DF_OF_OP_FOR_TUPLE(/);DF_OF_OP_FOR_TUPLE(%);DF_OF_INCREMENT_FOR_TUPLE(++);DF_OF_INCREMENT_FOR_TUPLE(--); TE <TY T,TY U> DC_OF_HASH(pair<T,U>);TE <TY T,TY U> DC_OF_HASH(tuple<T,U>);TE <TY T,TY U,TY V> DC_OF_HASH(tuple<T,U,V>);TE <TY T,TY U,TY V,TY W> DC_OF_HASH(tuple<T,U,V,W>); DF_OF_HASH_FOR_TUPLE(pair);DF_OF_HASH_FOR_TUPLE(tuple);TE <TY T,TY U,TY V> IN size_t hash<tuple<T,U,V>>::OP()(CO tuple<T,U,V>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<pair<T,U>> h01;ST CO hash<V> h2;RE(h01({get<0>(n),get<1>(n)})* seed)^ h2(get<2>(n));}TE <TY T,TY U,TY V,TY W> IN size_t hash<tuple<T,U,V,W>>::OP()(CO tuple<T,U,V,W>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<pair<T,U>> h01;ST CO hash<pair<V,W>> h23;RE(h01({get<0>(n),get<1>(n)})* seed)^ h23({get<2>(n),get<3>(n)});} // Vector(2KB) #define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN OS& OP<<(OS& os,CO V<Arg>& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;} #define DF_OF_OP_FOR_VE(V,OPR)TE <TY T> IN V<T>& OP OPR ## =(V<T>& a,CO T& t){for(auto& s:a){s OPR ## = t;}RE a;}TE <TY T> IN V<T>& OP OPR ## =(V<T>& a0,CO V<T>& a1){CO size_t SZ = a0.SZ();AS(a0.SZ()<= a1.SZ());auto IT0 = a0.BE(),EN0 = a0.EN(),IT1 = a1.BE();WH(IT0 != EN0){IT0 OPR ## = IT1;}RE a0;}TE <TY T,TY U> IN V<T> OP OPR(V<T> a,CO U& u){RE MO(a OPR ## = u);} #define DF_OF_INCREMENT_FOR_VE(V,INCR)TE <TY T> IN V<T>& OP INCR(V<T>& a){for(auto& i:a){INCR i;}RE a;} #define DF_OF_OPS_FOR_VE(V)DF_OF_OP_FOR_VE(V,+);DF_OF_OP_FOR_VE(V,-);DF_OF_OP_FOR_VE(V,*);DF_OF_OP_FOR_VE(V,/);DF_OF_OP_FOR_VE(V,%);DF_OF_INCREMENT_FOR_VE(V,++);DF_OF_INCREMENT_FOR_VE(V,--) DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_COUT_FOR_VE(set);DF_OF_COUT_FOR_VE(unordered_set);DF_OF_OPS_FOR_VE(VE);IN VO VariadicResize(CRI SZ){}TE <TY Arg,TY... ARGS> IN VO VariadicResize(CRI SZ,Arg& arg,ARGS&... args){arg.resize(SZ);VariadicResize(SZ,args...);}TE <TY T> VO sort(VE<T>& a,CO bool& reversed = false){if(reversed){ST auto comp =[](CO T& t0,CO T& t1){RE t1 < t0;};sort(a.BE(),a.EN(),comp);}else{sort(a.BE(),a.EN());}} // StdStream(1KB) TE <CL Traits> IN IS& VariadicCin(IS& is){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicCin(IS& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}TE <CL Traits> IN IS& VariadicSet(IS& is,CRI i){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicSet(IS& is,CRI i,Arg& arg,ARGS&... args){RE VariadicSet(is >> arg[i],i,args...);}TE <CL Traits> IN IS& VariadicGetline(IS& is,CO char& separator){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicGetline(IS& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}TE <CL Traits,TY Arg> IN OS& VariadicCout(OS& os,CO Arg& arg){RE os << arg;}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCout(OS& os,CO Arg1& arg1,CO Arg2& arg2,CO ARGS&... args){RE VariadicCout(os << arg1 << " ",arg2,args...);} // Algebra (4KB) #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();} TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PU VirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U = ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(U u0,CO U& u1);}; TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U>::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}TE <TY U>CL VirtualMonoid:VI PU VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TY U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TY M_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);};TE <TY U> IN MultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,U e_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){}TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U)){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;} // Graph (5KB) TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:VI PU UnderlyingSet<T>{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE <TY PATH> IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t<E,T> Edge(CO T& t)= 0;TE <TY PATH> IN ret_t<E,T> Edge(CO PATH& p);ST IN CO T& Vertex(CO T& t)NE;TE <TY PATH> ST IN CO T& Vertex(CO PATH& e)NE;VI R2 Enumeration_inv_Body(CO T& t)= 0;};TE <TY T,TY R1,TY R2,TY E>CL EdgeImplimentation:VI PU VirtualGraph<T,R1,R2,E>{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t<E,T> Edge(CO T& t);};TE <TY E>CL Graph:PU EdgeImplimentation<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE <TY F> IN Graph<F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:PU EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;IN ret_t<Enum_T_inv,T> Enumeration_inv_Body(CO T& t);};TE <TY Enum_T,TY Enum_T_inv,TY E> EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0)),Enum_T,Enum_T_inv,E>;TE <TY T,TY E>CL MemorisationGraph:PU EdgeImplimentation<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int> m_memory_inv;IN MemorisationGraph(CRI SZ,CO T& dummy,E edge);IN T Enumeration(CRI i);IN VO Reset();TE <TY F> IN MemorisationGraph<T,F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);}; TE <TY T,TY R1,TY R2,TY E> IN EdgeImplimentation<T,R1,R2,E>::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1> && is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):EdgeImplimentation<int,CRI,CRI,E>(SZ,MO(edge)){}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE <TY T,TY E> IN MemorisationGraph<T,E>::MemorisationGraph(CRI SZ,CO T& dummy,E edge):EdgeImplimentation<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v<E,T>);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <TY T,TY E> IN T MemorisationGraph<T,E>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE <TY T,TY R1,TY R2,TY E> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE <TY E> IN CRI Graph<E>::Enumeration_inv_Body(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T_inv,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE <TY T,TY E> IN CRI MemorisationGraph<T,E>::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <TY T,TY E> IN VO MemorisationGraph<T,E>::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI EdgeImplimentation<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T,TY R1,TY R2,TY E> IN E& EdgeImplimentation<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> EdgeImplimentation<T,R1,R2,E>::Edge(CO T& t){RE m_edge(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN ret_t<E,T> VirtualGraph<T,R1,R2,E>::Edge(CO PATH& p){RE Edge(get<0>(p));}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{RE EnumerationGraph<T,Enum_T,Enum_T_inv,F>(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <TY T,TY E> TE <TY F> IN MemorisationGraph<T,F> MemorisationGraph<T,E>::GetGraph(F edge)CO{RE MemorisationGraph<T,F>(TH->SZ(),MO(edge));}TE <TY T,TY R1,TY R2,TY E> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO T& t)NE{RE t;}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO PATH& e)NE{RE Vertex(get<0>(e));} // ConstexprModulo (7KB) CEXPR(uint,P,998244353); #define RP Represent #define DeRP Derepresent TE <uint M,TY INT> CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE <TY INT> CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} TE <uint M> CL Mod;TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 1e6;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order_minus_1 = M - 2;ST CE int g_order_minus_1_neg = -g_order_minus_1;}; #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod<M>& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod<M> OP OPR(Mod<M> n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE <uint M> CE bool Mod<M>::OP OPR(CO Mod<M>& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE <uint M> CE Mod<M> Mod<M>::OP OPR(Mod<M> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <uint M,TY T> CE Mod<M> OP OPR(T n0,CO Mod<M>& n1)EX{RE MO(Mod<M>(MO(n0))OPR ## = n1);} TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <TY T> CE Mod(T n)NE;CE Mod<M>& OP=(Mod<M> n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(Mod<M> n);TE <TY INT> CE Mod<M>& OP<<=(INT n);TE <TY INT> CE Mod<M>& OP>>=(INT n);CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE <TY INT> CE Mod<M> OP^(INT EX)CO;TE <TY INT> CE Mod<M> OP<<(INT n)CO;TE <TY INT> CE Mod<M> OP>>(INT n)CO;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;IN Mod<M>& Invert();TE <TY INT> CE Mod<M>& PW(INT EX);CE VO swap(Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(uint n)NE;ST IN CO Mod<M>& Inverse(CRUI n);ST IN CO Mod<M>& Factorial(CRUI n);ST IN CO Mod<M>& FactorialInverse(CRUI n);ST IN Mod<M> Combination(CRUI n,CRUI i);ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;TE <TY INT> CE Mod<M>& PositivePW(INT EX)NE;TE <TY INT> CE Mod<M>& NonNegativePW(INT EX)NE;US COants = COantsForMod<M>;}; US MP = Mod<P>; TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <TY T> CE Mod<M>::Mod(T n)NE:m_n(RS<M>(MO(n))){ST_AS(is_COructible_v<uint,decay_t<T> >);}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M> n)NE{m_n = MO(n.m_n);RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{m_n = MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy));RE *TH;}TE <uint M> IN Mod<M>& Mod<M>::OP/=(Mod<M> n){RE OP*=(n.Invert());}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod<M>(2).NonNegativePW(MO(n));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP^(INT EX)CO{RE MO(Mod<M>(*TH).PW(MO(EX)));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP<<(INT n)CO{RE MO(Mod<M>(*TH)<<= MO(n));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP>>(INT n)CO{RE MO(Mod<M>(*TH)>>= MO(n));}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE <uint M> IN Mod<M>& Mod<M>::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_LE?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants::g_memory_LE)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NonNegativePW(COants::g_order_minus_1);}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PositivePW(INT EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COants::g_order_minus_1_neg)):NonNegativePW(MO(EX));}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n){AS(n < COants::g_memory_LE);ST Mod<M> memory[COants::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CRUI n){if(M <= n){RE zero();}AS(n < COants::g_memory_LE);ST Mod<M> memory[COants::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n){ST Mod<M> memory[COants::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(uint n)NE{Mod<M> n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{1};RE o;}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M,TY INT> CE Mod<M> PW(Mod<M> n,INT EX){RE MO(n.PW(MO(EX)));}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE <uint M,CL Traits> IN basic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE <uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod<M>& n){RE os << n.RP();} #define DF_OF_HASH_FOR_MOD(MOD)IN size_t hash<MOD>::OP()(CO MOD& n)CO{ST CO hash<decltype(n.RP())> h;RE h(n.RP());} TE <uint M> DC_OF_HASH(Mod<M>); TE <uint M> DF_OF_HASH_FOR_MOD(Mod<M>); #endif // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN