結果

問題 No.900 aδδitivee
ユーザー hirayuu_ychirayuu_yc
提出日時 2024-05-15 14:58:56
言語 C++23(gcc13)
(gcc 13.2.0 + boost 1.83.0)
結果
AC  
実行時間 215 ms / 2,000 ms
コード長 20,068 bytes
コンパイル時間 6,010 ms
コンパイル使用メモリ 306,244 KB
実行使用メモリ 24,960 KB
最終ジャッジ日時 2024-05-15 14:59:10
合計ジャッジ時間 11,876 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 200 ms
17,792 KB
testcase_08 AC 204 ms
17,824 KB
testcase_09 AC 199 ms
17,712 KB
testcase_10 AC 201 ms
17,772 KB
testcase_11 AC 197 ms
17,792 KB
testcase_12 AC 202 ms
17,804 KB
testcase_13 AC 215 ms
17,720 KB
testcase_14 AC 205 ms
17,708 KB
testcase_15 AC 203 ms
17,600 KB
testcase_16 AC 214 ms
17,784 KB
testcase_17 AC 203 ms
17,792 KB
testcase_18 AC 209 ms
17,784 KB
testcase_19 AC 203 ms
17,772 KB
testcase_20 AC 205 ms
17,880 KB
testcase_21 AC 211 ms
17,920 KB
testcase_22 AC 173 ms
24,948 KB
testcase_23 AC 156 ms
24,960 KB
testcase_24 AC 159 ms
24,940 KB
testcase_25 AC 155 ms
24,860 KB
testcase_26 AC 161 ms
24,884 KB
testcase_27 AC 169 ms
24,960 KB
testcase_28 AC 153 ms
24,740 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/900"
#line 2 "/root/AtCoder/Halc-Library/DataStructure/LazySegmentTree.hpp"
#include <bit>
#include <cstdint>
#include <queue>
#include <stack>
#include <vector>
template <class M>
struct LazySegmentTree {
    using T = typename M::T;
    using F = typename M::F;
    int32_t siz;
    std::vector<T> tree;
    std::vector<F> del;
    LazySegmentTree(int32_t sz) {
        siz = sz;
        tree = std::vector<T>(siz << 1, M::e);
        del = std::vector<F>(siz << 1, M::id);
    }
    LazySegmentTree(std::vector<T> def) {
        siz = def.size();
        tree = std::vector<T>(siz << 1, M::e);
        del = std::vector<F>(siz << 1, M::id);
        for (int32_t i = 0; i < siz; i++) {
            tree[i + siz] = def[i];
        }
        for (int32_t i = siz - 1; i > 0; i--) {
            tree[i] = M::op(tree[i << 1], tree[(i << 1) + 1]);
        }
    }
    inline T _get(int32_t pos) { return tree[pos]; }
    void _calc(int32_t p) {
        p >>= 1;
        while (p > 0) {
            tree[p] = M::op(_get(p << 1), _get((p << 1) + 1));
            p >>= 1;
        }
    }
    inline void _del_segment(int32_t p) {
        tree[p << 1] = M::mapp(del[p], tree[p << 1]);
        del[p << 1] = M::comp(del[p], del[p << 1]);
        tree[(p << 1) + 1] = M::mapp(del[p], tree[(p << 1) + 1]);
        del[(p << 1) + 1] = M::comp(del[p], del[(p << 1) + 1]);
        del[p] = M::id;
    }
    void _delay(int32_t p) {
        int32_t length = 32 - std::countl_zero((uint32_t)p);
        for (int32_t i = length - 1; i >= 1; i--) {
            _del_segment(p >> i);
        }
    }
    void set(int32_t p, T v) {
        p += siz;
        _delay(p);
        tree[p] = v;
        del[p] = M::id;
        _calc(p);
    }
    T get(int32_t p) {
        _delay(p + siz);
        return _get(p + siz);
    }
    void apply(int32_t lf, int32_t ri, F f) {
        lf += siz;
        ri += siz;
        int32_t dl = lf >> (std::countr_zero((uint32_t)lf));
        int32_t dr = ri >> (std::countr_zero((uint32_t)ri));
        _delay(dl);
        _delay(dr - 1);
        while (lf < ri) {
            if (lf & 1) {
                tree[lf] = M::mapp(f, tree[lf]);
                del[lf] = M::comp(f, del[lf]);
                lf++;
            }
            if (ri & 1) {
                ri--;
                tree[ri] = M::mapp(f, tree[ri]);
                del[ri] = M::comp(f, del[ri]);
            }
            lf >>= 1;
            ri >>= 1;
        }
        _calc(dl);
        _calc(dr - 1);
    }
    T prod(int32_t lf, int32_t ri) {
        lf += siz;
        ri += siz;
        int32_t dl = lf >> (std::countr_zero((uint32_t)lf));
        int32_t dr = ri >> (std::countr_zero((uint32_t)ri));
        _delay(dl);
        _delay(dr - 1);
        T rel = M::e;
        T rer = M::e;
        while (lf < ri) {
            if (lf & 1) {
                rel = M::op(rel, _get(lf));
                lf++;
            }
            if (ri & 1) {
                ri--;
                rer = M::op(_get(ri), rer);
            }
            lf >>= 1;
            ri >>= 1;
        }
        return M::op(rel, rer);
    }
    template <bool (*f)(T)>
    int32_t max_right(int lf) {
        return max_right(lf, [](T x) { return f(x); });
    }
    template <class F>
    int32_t max_right(int32_t lf, F f) {
        lf += siz;
        int32_t ri = siz << 1;
        int32_t dl = lf >> (std::countr_zero((uint32_t)lf));
        int32_t dr = ri >> (std::countr_zero((uint32_t)ri));
        _delay(dl);
        _delay(dr - 1);
        std::queue<int32_t> lfp;
        std::stack<int32_t> rip;
        while (lf < ri) {
            if (lf & 1) {
                lfp.push(lf);
                lf++;
            }
            if (ri & 1) {
                ri--;
                rip.push(ri);
            }
            lf >>= 1;
            ri >>= 1;
        }
        T val = M::e;
        while (!lfp.empty()) {
            int32_t i = lfp.front();
            lfp.pop();
            if (!f(M::op(val, _get(i)))) {
                while (i < siz) {
                    _del_segment(i);
                    i <<= 1;
                    if (f(M::op(val, _get(i)))) {
                        val = M::op(val, _get(i));
                        i++;
                    }
                }
                return i - siz;
            }
            val = M::op(val, _get(i));
        }
        while (!rip.empty()) {
            int32_t i = rip.top();
            rip.pop();
            if (!f(M::op(val, _get(i)))) {
                while (i < siz) {
                    _del_segment(i);
                    i <<= 1;
                    if (f(M::op(val, _get(i)))) {
                        val = M::op(val, _get(i));
                        i++;
                    }
                }
                return i - siz;
            }
            val = M::op(val, _get(i));
        }
        return siz;
    }
    template <bool (*f)(T)>
    int32_t min_left(int ri) {
        return min_left(ri, [](T x) { return f(x); });
    }
    template <class F>
    int32_t min_left(int32_t ri, F f) {
        ri += siz;
        int32_t lf = siz;
        int32_t dl = lf >> (std::countr_zero((uint32_t)lf));
        int32_t dr = ri >> (std::countr_zero((uint32_t)ri));
        _delay(dl);
        _delay(dr - 1);
        std::queue<int32_t> rip;
        std::stack<int32_t> lfp;
        while (lf < ri) {
            if (lf & 1) {
                lfp.push(lf);
                lf++;
            }
            if (ri & 1) {
                ri--;
                rip.push(ri);
            }
            lf >>= 1;
            ri >>= 1;
        }
        T val = M::e;
        while (!rip.empty()) {
            int32_t i = rip.front();
            rip.pop();
            if (!f(M::op(val, _get(i)))) {
                while (i < siz) {
                    _del_segment(i);
                    i <<= 1;
                    i++;
                    if (f(M::op(_get(i), val))) {
                        val = M::op(_get(i), val);
                        i--;
                    }
                }
                return i - siz + 1;
            }
            val = M::op(_get(i), val);
        }
        while (!lfp.empty()) {
            int32_t i = lfp.top();
            lfp.pop();
            if (!f(M::op(val, _get(i)))) {
                while (i < siz) {
                    _del_segment(i);
                    i <<= 1;
                    i++;
                    if (f(M::op(_get(i), val))) {
                        val = M::op(_get(i), val);
                        i--;
                    }
                }
                return i - siz + 1;
            }
            val = M::op(_get(i), val);
        }
        return 0;
    }
    int32_t size() { return siz; }
};
#line 5 "/root/AtCoder/Halc-Library/Tree/HLDecomposition.hpp"

#line 4 "/root/AtCoder/Halc-Library/Graph/Graph.hpp"
template <class T = int32_t>
struct Edge {
    int32_t from, to;
    T cost;
    int32_t idx;
    Edge() = default;
    Edge(int32_t from, int32_t to, T cost = 1, int32_t idx = -1)
        : from(from), to(to), cost(cost), idx(idx) {}
    operator int32_t() { return to; }
    void reverse() { std::swap(from, to); }
};
template <class T = int32_t>
struct Graph {
    std::vector<std::vector<Edge<T>>> gr;
    int32_t eds = 0;
    Graph() = default;
    Graph(int32_t n) { gr.resize(n); }
    void add_edge(int32_t from, int32_t to, T cost = 1, bool directed = false) {
        gr[from].emplace_back(from, to, cost, eds);
        if (!directed) {
            gr[to].emplace_back(to, from, cost, eds);
        }
        eds++;
    }
    void add_directed_edge(int32_t from, int32_t to, T cost = 1) {
        gr[from].emplace_back(from, to, cost, eds);
        eds++;
    }
    inline std::vector<Edge<T>> &operator[](const int32_t &p) { return gr[p]; }
    int32_t size() { return gr.size(); }
};
template <class T>
Graph<T> reverse_edges(Graph<T> &gr) {
    Graph<T> ret(gr.size());
    for (int32_t i = 0; i < gr.size(); i++) {
        for (Edge<T> j : gr[i]) {
            ret[j].emplace_back(j);
            ret[j].back().reverse();
        }
    }
    return ret;
}
#line 7 "/root/AtCoder/Halc-Library/Tree/HLDecomposition.hpp"
struct HLDecomposition {
    struct Segment {
        int32_t lf, ri;
        bool rev;
    };
    int32_t sz;
    std::vector<int32_t> tree_sz;
    std::vector<int32_t> depth;
    std::vector<int32_t> order;
    std::vector<int32_t> path_roots;
    std::vector<int32_t> parent;
    std::vector<int32_t> out;
    template <class T>
    void _build(int32_t pos, Graph<T> &tree) {
        order[pos] = sz;
        sz++;
        int32_t mx = -1, mp = -1;
        for (int32_t i : tree[pos]) {
            if (i == parent[pos]) continue;
            if (mx < tree_sz[i]) {
                mx = tree_sz[i];
                mp = i;
            }
        }
        if (mx == -1) {
            out[pos] = sz;
            return;
        }
        path_roots[mp] = path_roots[pos];
        _build(mp, tree);
        for (int32_t i : tree[pos]) {
            if (i == parent[pos]) continue;
            if (i == mp) continue;
            path_roots[i] = i;
            _build(i, tree);
        }
        out[pos] = sz;
    }
    template <class T>
    int32_t _calc_sz(int32_t pos, Graph<T> &tree) {
        if (tree_sz[pos] != -1) return tree_sz[pos];
        tree_sz[pos] = 1;
        for (int32_t i : tree[pos]) {
            if (parent[pos] != i) {
                parent[i] = pos;
                depth[i] = depth[pos] + 1;
                tree_sz[pos] += _calc_sz(i, tree);
            }
        }
        return tree_sz[pos];
    }
    template <class T>
    HLDecomposition(Graph<T> &tree, int32_t root = 0) {
        sz = tree.size();
        tree_sz.resize(sz, -1);
        depth.resize(sz, -1);
        parent.resize(sz, -1);
        depth[root] = 0;
        _calc_sz(root, tree);
        order.resize(sz, -1);
        out.resize(sz, -1);
        path_roots.resize(sz, -1);
        sz = 0;
        path_roots[root] = root;
        _build(root, tree);
    }
    int32_t operator[](int32_t p) { return order[p]; }
    Segment subtree(int32_t pos) { return {order[pos], out[pos], false}; }
    std::vector<Segment> path(int32_t s, int32_t t) {
        std::vector<Segment> ret;
        std::stack<Segment> right;
        while (path_roots[s] != path_roots[t]) {
            if (depth[path_roots[s]] > depth[path_roots[t]]) {
                ret.emplace_back(
                    Segment{order[path_roots[s]], order[s] + 1, true});
                s = parent[path_roots[s]];
            } else {
                right.push({order[path_roots[t]], order[t] + 1, false});
                t = parent[path_roots[t]];
            }
        }
        if (depth[s] < depth[t]) {
            ret.emplace_back(Segment{order[s], order[t] + 1, false});
        } else {
            ret.emplace_back(Segment{order[t], order[s] + 1, true});
        }
        while (!right.empty()) {
            ret.push_back(right.top());
            right.pop();
        }
        return ret;
    }
    int32_t lca(int32_t s, int32_t t) {
        while (path_roots[s] != path_roots[t]) {
            if (depth[path_roots[s]] > depth[path_roots[t]]) {
                s = parent[path_roots[s]];
            } else {
                t = parent[path_roots[t]];
            }
        }
        if (depth[s] < depth[t]) return s;
        return t;
    }
};
#line 2 "/root/AtCoder/Halc-Library/Template/Template.hpp"
#include <bits/stdc++.h>
using namespace std;

#line 8 "/root/AtCoder/Halc-Library/Template/InOut.hpp"
inline void scan() {}
inline void scan(int &a) { std::cin >> a; }
inline void scan(unsigned &a) { std::cin >> a; }
inline void scan(long &a) { std::cin >> a; }
inline void scan(long long &a) { std::cin >> a; }
inline void scan(unsigned long long &a) { std::cin >> a; }
inline void scan(char &a) { std::cin >> a; }
inline void scan(float &a) { std::cin >> a; }
inline void scan(double &a) { std::cin >> a; }
inline void scan(long double &a) { std::cin >> a; }
inline void scan(std::vector<bool> &vec) {
    for (int32_t i = 0; i < vec.size(); i++) {
        int a;
        scan(a);
        vec[i] = a;
    }
}
inline void scan(std::string &a) { std::cin >> a; }
template <class T>
inline void scan(std::vector<T> &vec);
template <class T, size_t size>
inline void scan(std::array<T, size> &vec);
template <class T, class L>
inline void scan(std::pair<T, L> &p);
template <class T, size_t size>
inline void scan(T (&vec)[size]);
template <class T>
inline void scan(std::vector<T> &vec) {
    for (auto &i : vec) scan(i);
}
template <class T>
inline void scan(std::deque<T> &vec) {
    for (auto &i : vec) scan(i);
}
template <class T, size_t size>
inline void scan(std::array<T, size> &vec) {
    for (auto &i : vec) scan(i);
}
template <class T, class L>
inline void scan(std::pair<T, L> &p) {
    scan(p.first);
    scan(p.second);
}
template <class T, size_t size>
inline void scan(T (&vec)[size]) {
    for (auto &i : vec) scan(i);
}
template <class T>
inline void scan(T &a) {
    std::cin >> a;
}
inline void in() {}
template <class Head, class... Tail>
inline void in(Head &head, Tail &...tail) {
    scan(head);
    in(tail...);
}
inline void print() { std::cout << ' '; }
inline void print(const bool &a) { std::cout << a; }
inline void print(const int &a) { std::cout << a; }
inline void print(const unsigned &a) { std::cout << a; }
inline void print(const long &a) { std::cout << a; }
inline void print(const long long &a) { std::cout << a; }
inline void print(const unsigned long long &a) { std::cout << a; }
inline void print(const char &a) { std::cout << a; }
inline void print(const char a[]) { std::cout << a; }
inline void print(const float &a) { std::cout << a; }
inline void print(const double &a) { std::cout << a; }
inline void print(const long double &a) { std::cout << a; }
inline void print(const std::string &a) {
    for (auto &&i : a) print(i);
}
template <class T>
inline void print(const std::vector<T> &vec);
template <class T, size_t size>
inline void print(const std::array<T, size> &vec);
template <class T, class L>
inline void print(const std::pair<T, L> &p);
template <class T, size_t size>
inline void print(const T (&vec)[size]);
template <class T>
inline void print(const std::vector<T> &vec) {
    if (vec.empty()) return;
    print(vec[0]);
    for (auto i = vec.begin(); ++i != vec.end();) {
        std::cout << ' ';
        print(*i);
    }
}
template <class T>
inline void print(const std::deque<T> &vec) {
    if (vec.empty()) return;
    print(vec[0]);
    for (auto i = vec.begin(); ++i != vec.end();) {
        std::cout << ' ';
        print(*i);
    }
}
template <class T, size_t size>
inline void print(const std::array<T, size> &vec) {
    print(vec[0]);
    for (auto i = vec.begin(); ++i != vec.end();) {
        std::cout << ' ';
        print(*i);
    }
}
template <class T, class L>
inline void print(const std::pair<T, L> &p) {
    print(p.first);
    std::cout << ' ';
    print(p.second);
}
template <class T, size_t size>
inline void print(const T (&vec)[size]) {
    print(vec[0]);
    for (auto i = vec; ++i != end(vec);) {
        std::cout << ' ';
        print(*i);
    }
}
template <class T>
inline void print(const T &a) {
    std::cout << a;
}
inline void out() { std::cout << '\n'; }
template <class T>
inline void out(const T &t) {
    print(t);
    std::cout << '\n';
}
template <class Head, class... Tail>
inline void out(const Head &head, const Tail &...tail) {
    print(head);
    std::cout << ' ';
    out(tail...);
}
inline void Yes(bool i = true) { out(i ? "Yes" : "No"); }
inline void No(bool i = true) { out(i ? "No" : "Yes"); }
struct IOsetup {
    IOsetup() {
        std::ios::sync_with_stdio(false);
        std::cin.tie(nullptr);
        std::cout << std::setprecision(10);
    }
} iosetup;
#line 8 "/root/AtCoder/Halc-Library/Template/Util.hpp"
using ll = long long;
using ld = long double;
using ull = unsigned long long;
using uint = unsigned int;
using pll = std::pair<ll, ll>;
using pii = std::pair<int, int>;
using vl = std::vector<ll>;
using vvl = std::vector<std::vector<ll>>;
using pdd = std::pair<ld, ld>;
using tuplis = std::array<ll, 3>;
template <class T>
using pq = std::priority_queue<T, std::vector<T>, std::greater<T>>;
constexpr ll LINF = (1LL << 62) - (1LL << 31);
constexpr int32_t INF = INT_MAX >> 1;
constexpr ll MINF = 1LL << 40;
constexpr ld DINF = std::numeric_limits<ld>::infinity();
constexpr int32_t MODD = 1000000007;
constexpr int32_t MOD = 998244353;
constexpr ld EPS = 1e-9;
constexpr ld PI = 3.1415926535897932;
const ll four[] = {0, 1, 0, -1, 0};
const ll eight[] = {0, 1, 1, 0, -1, -1, 1, -1, 0};
template <class T>
bool chmin(T &a, const T &b) {
    if (a > b) {
        a = b;
        return true;
    } else
        return false;
}
template <class T>
bool chmax(T &a, const T &b) {
    if (a < b) {
        a = b;
        return true;
    } else
        return false;
}
template <class T>
ll sum(const T &a) {
    return accumulate(std::begin(a), std::end(a), 0LL);
}
template <class T>
ld dsum(const T &a) {
    return accumulate(std::begin(a), std::end(a), 0.0L);
}
template <class T>
auto min(const T &a) {
    return *min_element(std::begin(a), std::end(a));
}
template <class T>
auto max(const T &a) {
    return *max_element(std::begin(a), std::end(a));
}
#line 1 "/root/AtCoder/Halc-Library/Template/Macro.hpp"
#define _overload3(_1, _2, _3, name, ...) name
#define _overload4(_1, _2, _3, _4, name, ...) name
#define _rep1(i, n) for (ll i = 0; i < (n); i++)
#define _rep2(i, a, b) for (ll i = (a); i < (b); i++)
#define _rep3(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) _overload4(__VA_ARGS__, _rep3, _rep2, _rep1)(__VA_ARGS__)
#define _rrep1(i, n) for (int i = (n) - 1; i >= 0; i--)
#define _rrep2(i, a, b) for (int i = (b) - 1; i >= (a); i--)
#define rrep(...) _overload3(__VA_ARGS__, _rrep2, _rrep1)(__VA_ARGS__)
#define each(i, ...) for (auto&& i : __VA_ARGS__)
#define all(i) std::begin(i), std::end(i)
#define rall(i) std::rbegin(i), std::rend(i)
#define len(x) ((ll)(x).size())
#define fi first
#define se second
#define uniq(x) x.erase(unique(all(x)), std::end(x))
#define vec(type, name, ...) vector<type> name(__VA_ARGS__);
#define vv(type, name, h, ...) std::vector<std::vector<type>> name(h, std::vector<type>(__VA_ARGS__));
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) long long __VA_ARGS__; in(__VA_ARGS__)
#define ULL(...) unsigned long long __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) std::string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) long double __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) std::vector<type> name(size); in(name)
#define VV(type, name, h, w) std::vector<std::vector<type>> name(h, std::vector<type>(w)); in(name)
#line 5 "main.cpp"
struct ops {
    using T = pll;
    using F = ll;
    static T op(T x, T y) { return {x.fi + y.fi, x.se + y.se}; }
    static inline T e = {0, 0};
    static T mapp(F f, T x) { return {x.fi, x.se + x.fi * f}; }
    static F comp(F f, F g) { return f + g; }
    static inline F id = 0;
};
void solve() {
    LL(N);
    Graph gr(N);
    rep(i, N - 1) {
        LL(u,v, w);
        gr.add_edge(u, v,w);
    }
    HLDecomposition hld(gr);
    LazySegmentTree<ops> seg(N);
    seg.set(0,{1,0});
    rep(i, N) {
        each(j,gr[i]){
            if(hld.depth[i]<hld.depth[j]){
                seg.set(hld[j],{1,j.cost});
            }
        }
    }
    LL(Q);
    rep(_, Q) {
        LL(t);
        if (t == 1) {
            LL(a, x);
            auto sg = hld.subtree(a);
            seg.apply(sg.lf, sg.ri, x);
            seg.set(hld[a], {1, seg.get(hld[a]).se - x});
        } else {
            LL(b);
            ll ans = 0;
            for (auto &[lf, ri, _] : hld.path(0, b)) {
                ans += seg.prod(lf, ri).se;
            }
            out(ans);
        }
    }
}
int main() { solve(); }
0