結果
問題 | No.2763 Macaron Gift Box |
ユーザー | aplysiaSheep |
提出日時 | 2024-05-16 13:59:40 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 40,828 bytes |
コンパイル時間 | 7,367 ms |
コンパイル使用メモリ | 338,404 KB |
実行使用メモリ | 24,992 KB |
最終ジャッジ日時 | 2024-05-16 13:59:53 |
合計ジャッジ時間 | 12,314 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,884 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | TLE | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
ソースコード
#include <bits/stdc++.h> using namespace std; #include <atcoder/all> using namespace atcoder; #define int long long // #define endl "\n" #ifndef _LOCAL #pragma GCC optimize("-O3") // #pragma GCC target("avx2") // #pragma GCC optimize("unroll-loops") #endif void solve(); typedef long long ll; typedef __int128_t LL; typedef unsigned long long ull; typedef double db; typedef long double ld; typedef pair<int, int> pi; typedef pair<int, pair<int, int>> pip; typedef vector<int> vi; typedef vector<double> vd; typedef vector<bool> vb; typedef vector<string> vs; typedef vector<char> vc; typedef vector<pair<int, int>> vp; typedef vector<vector<int>> vvi; typedef vector<vector<double>> vvd; typedef vector<vector<bool>> vvb; typedef vector<vector<string>> vvs; typedef vector<vector<char>> vvc; typedef vector<vector<pair<int, int>>> vvp; typedef vector<vector<vector<int>>> vvvi; typedef vector<vector<vector<vector<int>>>> vvvvi; template <typename T> using vec = vector<T>; template <typename T> using vv = vector<vector<T>>; template <typename T> using vvv = vector<vector<vector<T>>>; template <typename T> using vvvv = vector<vector<vector<vector<T>>>>; template <typename T> using pq = priority_queue<T>; template <typename T> using pqg = priority_queue<T, vector<T>, greater<T>>; template <typename T> using mset = multiset<T>; template <typename T> using uset = unordered_set<T>; template <typename T, typename U> using umap = unordered_map<T, U>; #define _PI 3.14159265358979323846 #define _E 2.7182818284590452354 #define fi first #define se second #define pb push_back #define eb emplace_back #define mp make_pair #define bg begin() #define ed end() #define mt make_tuple #define td typedef #define elif else if #define ifnot(x) if(!(x)) #define si(x) (int)((x).size()) #define all(obj) (obj).begin(), (obj).end() #define rall(obj) (obj).rbegin(), (obj).rend() #define lb(v, a) (lower_bound(begin(v), end(v), a) - begin(v)) #define ub(v, a) (upper_bound(begin(v), end(v), a) - begin(v)) #define inr(l, x, r) (l <= x && x < r) #define cbit(x) __builtin_popcountll(x) #define tbit(t) (t == 0 ? -1 : 63 - __builtin_clzll(t)) #define bbit(t) (t == 0 ? 64 : __builtin_ctzll(t)) #define gb(msk, i) ((msk) >> (i) & 1) #define mask(x) ((1LL << (x)) - 1) #define setbits(i, n) \ for(int j_ = (n), i = bbit(j_); j_; j_ ^= 1LL << i, i = bbit(j_)) #define rep1(a) \ for(int NEVER_USE_VARIABLE = 0; NEVER_USE_VARIABLE < (int)a; \ NEVER_USE_VARIABLE++) #define rep2(i, a) for(int i = 0; i < (int)a; i++) #define rep3(i, a, b) for(int i = a; i < (int)b; i++) #define rep4(i, a, b, c) for(int i = a; i < (int)b; i += c) #define overload4(a, b, c, d, e, ...) e #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) for(ll NEVER_USE_VARIABLE = n; NEVER_USE_VARIABLE--;) #define rrep2(i, n) for(ll i = n; i--;) #define rrep3(i, a, b) for(ll i = b; i-- > (a);) #define rrep4(i, a, b, c) \ for(ll i = (a) + ((b) - (a) - 1) / (c) * (c); i >= (a); i -= c) #define rrep(...) \ overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define reps(i, a) for(int i = 0; i < (int)a.size(); i++) #define rreps(i, a) for(int i = (int)a.size() - 1; i >= 0; i--) #define fore1(i, a) for(auto &&i : a) #define fore2(x, y, a) for(auto &&[x, y] : a) #define fore3(x, y, z, a) for(auto &&[x, y, z] : a) #define fore(...) overload4(__VA_ARGS__, fore3, fore2, fore1)(__VA_ARGS__) #define ryes return yes(); #define rno return no(); #define rerr return err(); istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } // 十進数からb進数へ template <class T> string to_baseB(T x, int b = 10) { string ans; do { int num = x % b; ans = (char)((num <= 9) ? ('0' + num) : ('A' + num - 10)) + ans; x /= b; } while(x != 0); return ans; } // b進数から十進数へ long long to_base10(const string &x, int b = 10) { long long ans = 0, base = 1; for(int i = x.length() - 1; i >= 0; --i) { int num = ('0' <= x[i] && x[i] <= '9') ? (x[i] - '0') : (x[i] - 'A' + 10); ans += base * num; base *= b; } return ans; } ostream &operator<<(ostream &s, const __int128_t &p) { s << to_baseB(p); return s; } istream &operator>>(istream &is, __int128_t &v) { string s; is >> s; v = 0; for(int i = 0; i < (int)s.size(); i++) { if(isdigit(s[i])) { v = v * 10 + s[i] - '0'; } } if(s[0] == '-') { v *= -1; } return is; } template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << "," << p.second; return os; } template <class T> ostream &operator<<(ostream &s, set<T> P) { fore(it, P) { s << it << " "; } return s; } template <class T1, class T2> ostream &operator<<(ostream &s, map<T1, T2> P) { fore(x, y, P) { s << "<" << x << "->" << y << "> "; } return s; } template <class T> ostream &operator<<(ostream &s, multiset<T> P) { fore(it, P) { s << it << " "; } return s; } template <class T> ostream &operator<<(ostream &s, unordered_set<T> P) { fore(it, P) { s << it << " "; } return s; } template <class T1, class T2> ostream &operator<<(ostream &s, unordered_map<T1, T2> P) { fore(x, y, P) { s << "<" << x << "->" << y << "> "; } return s; } template <class T> istream &operator>>(istream &is, vector<T> &v) { for(auto &e : v) is >> e; return is; } template <class T> ostream &operator<<(ostream &os, const vector<T> &v) { for(auto &e : v) os << e << ' '; return os; } template <class T> ostream &operator<<(ostream &os, const vector<vector<T>> &v) { for(auto &e : v) { for(auto &c : e) os << c << ' '; os << endl; } return os; } template <class t, size_t n> ostream &operator<<(ostream &os, const array<t, n> &a) { return os << vector<t>(all(a)); } template <int i, class T> void print_tuple(ostream &, const T &) {} template <int i, class T, class H, class... Args> void print_tuple(ostream &os, const T &t) { if(i) os << ","; os << get<i>(t); print_tuple<i + 1, T, Args...>(os, t); } template <class... Args> ostream &operator<<(ostream &os, const tuple<Args...> &t) { print_tuple<0, tuple<Args...>, Args...>(os, t); return os; } template <class T> ostream &operator<<(ostream &os, queue<T> q) { while(!q.empty()) { os << q.front() << ' '; q.pop(); } return os; } template <class T> ostream &operator<<(ostream &os, stack<T> q) { while(!q.empty()) { os << q.top() << ' '; q.pop(); } return os; } template <class T> ostream &operator<<(ostream &os, deque<T> q) { while(!q.empty()) { os << q.front() << ' '; q.pop_front(); } return os; } template <class T> ostream &operator<<(ostream &os, priority_queue<T> q) { while(!q.empty()) { os << q.top() << ' '; q.pop(); } return os; } template <class T> ostream &operator<<(ostream &os, priority_queue<T, vector<T>, greater<T>> q) { while(!q.empty()) { os << q.top() << ' '; q.pop(); } return os; } template <class T> vector<T> &operator++(vector<T> &v) { for(auto &e : v) e++; return v; } template <class T> vector<T> operator++(vector<T> &v, signed) { auto res = v; for(auto &e : v) e++; return res; } template <class T> vector<T> &operator--(vector<T> &v) { for(auto &e : v) e--; return v; } template <class T> vector<T> operator--(vector<T> &v, signed) { auto res = v; for(auto &e : v) e--; return res; } template <class T, class U> pair<T, U> &operator+=(pair<T, U> &a, pair<T, U> b) { a.first += b.first; a.second += b.second; return a; } template <class T, class U> pair<T, U> &operator-=(pair<T, U> &a, pair<T, U> b) { a.first -= b.first; a.second -= b.second; return a; } template <class T, class U> pair<T, U> operator+(pair<T, U> a, pair<T, U> b) { return make_pair(a.first + b.first, a.second + b.second); } template <class T, class U> pair<T, U> operator-(pair<T, U> a, pair<T, U> b) { return make_pair(a.first - b.first, a.second - b.second); } // debug methods // usage: debug(x,y); #define CHOOSE(a) CHOOSE2 a #define CHOOSE2(a0, a1, a2, a3, a4, x, ...) x #define debug_1(x1) cout << #x1 << ": " << x1 << endl #define debug_2(x1, x2) \ cout << #x1 << ": " << x1 << ", " #x2 << ": " << x2 << endl #define debug_3(x1, x2, x3) \ cout << #x1 << ": " << x1 << ", " #x2 << ": " << x2 << ", " #x3 << ": " \ << x3 << endl #define debug_4(x1, x2, x3, x4) \ cout << #x1 << ": " << x1 << ", " #x2 << ": " << x2 << ", " #x3 << ": " \ << x3 << ", " #x4 << ": " << x4 << endl #define debug_5(x1, x2, x3, x4, x5) \ cout << #x1 << ": " << x1 << ", " #x2 << ": " << x2 << ", " #x3 << ": " \ << x3 << ", " #x4 << ": " << x4 << ", " #x5 << ": " << x5 << endl #ifdef _DEBUG #define debug(...) \ CHOOSE((__VA_ARGS__, debug_5, debug_4, debug_3, debug_2, debug_1, ~)) \ (__VA_ARGS__) #else #define debug(...) #endif void out() { cout << endl; } template <class T> void out(const T &a) { cout << a; cout << endl; } template <class T, class... Ts> void out(const T &a, const Ts &...b) { cout << a; (cout << ... << (cout << ' ', b)); cout << endl; } void ofs_in(ostream &ofs) { ofs << endl; } template <class T> void ofs_in(ostream &ofs, const T &a) { ofs << a; ofs << endl; } template <class T, class... Ts> void ofs_in(ostream &ofs, const T &a, const Ts &...b) { ofs << a; (ofs << ... << (ofs << ' ', b)); ofs << endl; } #define rout_1(x1) return out(x1) #define rout_2(x1, x2) return out(x1, x2) #define rout_3(x1, x2, x3) return out(x1, x2, x3) #define rout_4(x1, x2, x3, x4) return out(x1, x2, x3, x4) #define rout_5(x1, x2, x3, x4, x5) return out(x1, x2, x3, x4, x5) #define rout(...) \ CHOOSE((__VA_ARGS__, rout_5, rout_4, rout_3, rout_2, rout_1, ~)) \ (__VA_ARGS__) struct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(12); }; } fast_ios_; template <class T = long long> struct Binomial { int p; int MAX; vector<long long> fac, finv, inv; // テーブルを作る前処理 Binomial(int p_, int n = 1) : p(p_), MAX(1), fac(2), finv(2), inv(2) { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; if(n != 1) build(n); } void build(int new_max) { MAX++; fac.resize(new_max + 1); inv.resize(new_max + 1); finv.resize(new_max + 1); for(; MAX <= new_max; MAX++) { fac[MAX] = fac[MAX - 1] * MAX % p; inv[MAX] = p - inv[p % MAX] * (p / MAX) % p; finv[MAX] = finv[MAX - 1] * inv[MAX] % p; } MAX--; } // nCk T mod_comb(int n, int k) { if(n < k) return 0; if(n < 0 || k < 0) return 0; if(n > MAX) build(n); return fac[n] * (finv[k] * finv[n - k] % p) % p; } T operator()(int n, int k) { return mod_comb(n, k); } // nPk T mod_perm(int n, int k) { if(n < k) return 0; if(n < 0 || k < 0) return 0; if(n > MAX) build(n); return fac[n] * finv[n - k] % p; } // n! T operator[](int n) { if(n > MAX) build(n); return fac[n]; } // 1/n! T operator()(int n) { if(n > MAX) build(n); return finv[n]; } }; template <typename T = long long> struct modpow { long long x, m; int n; vector<T> d; modpow(long long x) : x(x), n(1), d(1, 1) {} T operator[](int i) { while(n <= i) d.push_back(d.back() * x), ++n; return d[i]; } }; modpow two(2), ten(10); /* 座標圧縮 https://youtu.be/fR3W5IcBGLQ?t=8550 を参考に (T x):xが何番目か [T i]:i番目の値 */ template <typename T = int> struct CC { bool initialized; vector<T> xs; CC() : initialized(false) {} CC(vector<T> v) : initialized(false) { for(auto x : v) xs.push_back(x); } void add(T x) { xs.push_back(x); } void add(vector<T> v) { for(auto x : v) xs.push_back(x); } void init() { sort(xs.begin(), xs.end()); xs.erase(unique(xs.begin(), xs.end()), xs.end()); initialized = true; } int operator()(T x) { if(!initialized) init(); return upper_bound(xs.begin(), xs.end(), x) - xs.begin() - 1; } T operator[](int i) { if(!initialized) init(); return xs[i]; } int size() { if(!initialized) init(); return xs.size(); } friend ostream &operator<<(ostream &os, const CC &cc) { for(int i = 0; i < (int)cc.xs.size(); i++) { os << cc.xs[i] << " "; } os << endl; return (os); } }; struct RandomNumberGenerator { mt19937 engine; RandomNumberGenerator(int seed = -1) { if(seed == -1) engine = mt19937(chrono::steady_clock::now().time_since_epoch().count()); else engine = mt19937(seed); } long long operator()(long long a, long long b) { // [a, b) uniform_int_distribution<long long> dist(a, b - 1); return dist(engine); } long long operator()(long long b) { // [0, b) return (*this)(0, b); } long long operator()() { return (*this)(0, 1LL << 60); } double operator[](double a) { return (double)(*this)(0, 1LL << 60) / (1LL << 60) * a; } double normal_dist(double sigma, double mean = 0) { std::normal_distribution<> dist(mean, sigma); return dist(engine); } } rnd; clock_t start_time = clock(); double now_time() { clock_t end_time = clock(); return (double)(end_time - start_time) / CLOCKS_PER_SEC; } template <class T = int, size_t n, size_t idx = 0> auto mv(const size_t (&d)[n], const T &init) noexcept { if constexpr(idx < n) return std::vector(d[idx], mv<T, n, idx + 1>(d, init)); else return init; } template <class T = int, size_t n> auto mv(const size_t (&d)[n]) noexcept { return mv(d, T{}); } template <class T> void rnd_shuffle(vector<T> &v) { shuffle(v.begin(), v.end(), rnd.engine); } template <class T> T sample(T v, int n) { T res; sample(v.begin(), v.end(), back_inserter(res), n, rnd.engine); return res; } template <class F> long long bin_search(long long ok, long long ng, const F &f) { while(abs(ok - ng) > 1) { long long mid = (ok + ng) >> 1; (f(mid) ? ok : ng) = mid; } return ok; } template <class T, class F> T bin_search_double(T ok, T ng, const F &f, int iter = 90) { while(iter--) { T mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } return ok; } void read_edges(vector<vector<int>> &g, int m = -1, int bidirected = true) { if(m == -1) m = g.size() - 1; for(int i = 0; i < m; i++) { int u, v; cin >> u >> v; u--; v--; g[u].push_back(v); if(bidirected) g[v].push_back(u); } } vector<int> counter(vector<int> &v, int mx = -1) { if(mx == -1) mx = *max_element(v.begin(), v.end()); vector<int> res(mx + 1); for(auto x : v) res[x]++; return res; } template <class T = int, class U = vector<T>> map<T, int> map_counter(U &v) { map<T, int> res; for(auto x : v) res[x]++; return res; } vector<int> iota(int n, int s = 0) { vi a(n); iota(a.begin(), a.end(), s); return a; } template <class T> void sort(T &v) { sort(all(v)); } template <class T> void rsort(T &v) { sort(rall(v)); } template <class T> void reverse(T &v) { reverse(all(v)); } template <class T> auto max(const T &a) { return *max_element(a.begin(), a.end()); } template <class T> auto min(const T &a) { return *min_element(a.begin(), a.end()); } template <class T> int argmax(const T &a) { return max_element(a.begin(), a.end()) - a.begin(); } template <class T> int argmin(const T &a) { return min_element(a.begin(), a.end()) - a.begin(); } long long max(signed x, long long y) { return max((long long)x, y); } long long max(long long x, signed y) { return max(x, (long long)y); } long long min(signed x, long long y) { return min((long long)x, y); } long long min(long long x, signed y) { return min(x, (long long)y); } template <class T, class S> bool chmax(T &a, const S &b) { if(a < (T)b) { a = (T)b; return 1; } return 0; } template <class T, class S> bool chmin(T &a, const S &b) { if((T)b < a) { a = (T)b; return 1; } return 0; } template <class T> vector<int> argsort(vector<T> v, bool ascending_order = true) { vector<int> res(v.size()); iota(res.begin(), res.end(), 0); if(ascending_order) sort(res.begin(), res.end(), [&](int i, int j) { return v[i] < v[j]; }); else sort(res.begin(), res.end(), [&](int i, int j) { return v[i] > v[j]; }); return res; } template <class T> T sumv(vector<T> &v) { T res = 0; int n = v.size(); for(int i = 0; i < n; i++) res += v[i]; return res; } template <class T> vector<T> uniq(vector<T> v) { sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); return v; } template <class T> vector<T> compress(vector<T> v) { vector<T> v2(v.size()); v2 = v; sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); for(int i = 0; i < (int)v2.size(); i++) { v2[i] = lower_bound(v.begin(), v.end(), v2[i]) - v.begin(); } return v2; } vector<int> inverse(vector<int> &p) { int n = p.size(); vector<int> inv(n); for(int i = 0; i < n; i++) inv[p[i]] = i; return inv; } template <typename T> vector<pair<T, int>> idx_pair(vector<T> &a) { int n = a.size(); vector<pair<T, int>> res(n); for(int i = 0; i < n; i++) res[i] = {a[i], i}; return res; } template <typename T> vector<T> acc0(vector<T> &v) { vector<T> res(v.size()); if((int)v.size() == 0) return res; res[0] = v[0]; for(int i = 1; i < (int)v.size(); i++) { res[i] = res[i - 1] + v[i]; } return res; } template <typename T> vector<T> acc1(vector<T> &v) { vector<T> res(v.size() + 1); for(int i = 0; i < (int)v.size(); i++) { res[i + 1] = res[i] + v[i]; } return res; } template <typename T> vector<vector<T>> acc0(vector<vector<T>> v) { int h = v.size(), w = v[0].size(); for(int i = 0; i < h; i++) { for(int j = 1; j < w; j++) { v[i][j] += v[i][j - 1]; } } for(int i = 1; i < h; i++) { for(int j = 0; j < w; j++) { v[i][j] += v[i - 1][j]; } } return v; } template <typename T> vector<vector<T>> acc1(vector<vector<T>> &v) { int h = v.size(), w = v[0].size(); vector<vector<T>> res(h + 1, vector<T>(w + 1)); for(int i = 0; i < h; i++) { for(int j = 0; j < w; j++) { res[i + 1][j + 1] = v[i][j] + res[i + 1][j]; } } for(int i = 0; i < h; i++) { for(int j = 0; j < w; j++) { res[i + 1][j + 1] += res[i][j + 1]; } } return res; } template <class T> void erase1(multiset<T> &st, int x) { auto it = st.find(x); assert(it != st.end()); st.erase(it); } long long exp(long long x, int n) { long long res = 1; while(n > 0) { if(n & 1) res = res * x; x = x * x; n >>= 1; } return res; } __int128_t absl(const __int128_t &x) { return x > 0 ? x : -x; } bool ispow2(int i) { return i && (i & -i) == i; } int countDigits(long long n) { string tmp = to_string(n); return (int)tmp.size(); } template <class T> T sq(T n) { return n * n; } long long ceil(long long x, long long y) { return (x + y - 1) / y; } long long floor(long long x, long long y) { return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1))); } constexpr long long tri(long long n) { return n * (n + 1) / 2; } // l + ... + r constexpr long long tri(long long l, long long r) { return (l + r) * (r - l + 1) / 2; } template <typename T> T modulo(T n, T d) { return (n % d + d) % d; } int ctoi(const char &c, const char start = '0') { return c - start; } int atoi(const char &c, const char start = 'a') { return c - start; } vector<int> ctoi(string &s, const char start = '0') { vector<int> res; for(auto &c : s) { int x = c - start; if(x < 0 || x >= 10) x = -1; res.push_back(x); } return res; } vector<int> atoi(string &s, const char start = 'a') { vector<int> res; for(auto &c : s) { int x = c - start; if(x < 0 || x >= 26) x = -1; res.push_back(x); } return res; } vector<vector<int>> ctoi(vector<string> &s, const char start = '0') { int n = s.size(); vector<vector<int>> res(n); for(int i = 0; i < n; i++) res[i] = ctoi(s[i], start); return res; } vector<vector<int>> atoi(vector<string> &s, const char start = 'a') { int n = s.size(); vector<vector<int>> res(n); for(int i = 0; i < n; i++) res[i] = atoi(s[i], start); return res; } string itoc(vector<int> &v, const char start = '0') { int n = v.size(); string res; for(int i = 0; i < n; i++) { res.push_back(start + v[i]); } return res; } string itoa(vector<int> &v, const char start = 'a') { return itoc(v, start); } vector<string> itoc(vector<vector<int>> &v, const char start = '0') { int n = v.size(); vector<string> res(n); for(int i = 0; i < n; i++) { int m = v[i].size(); for(int j = 0; j < m; j++) { res[i] = itoc(v[i], start); } } return res; } vector<string> itoa(vector<vector<int>> &v, const char start = 'a') { return itoc(v, start); } template <class T> int mex(T &a) { int n = a.size(); vector<int> cnt(n + 1); for(auto x : a) { if(x > n) continue; cnt[x]++; } int res = 0; while(cnt[res]) res++; return res; } void yes() { cout << "Yes" << endl; // cout << "Alice" << endl; // cout << "Takahashi" << endl; } void no() { cout << "No" << endl; // cout << "Bob" << endl; // cout << "Aoki" << endl; } void yesno(bool x) { if(x) yes(); else no(); } void err() { cout << -1 << endl; } int dx[] = {1, 0, -1, 0, 1, 1, -1, -1}; int dy[] = {0, 1, 0, -1, -1, 1, 1, -1}; long long inf = (1 << 30) + (1LL << 60) - 2; double eps = 1e-9; // long long mod = 67280421310721; // using mint = static_modint<1000000009>; // using mint = dynamic_modint<1000000009>; // long long mod = 1000000007; // using mint = modint1000000007; long long mod = 998244353; using mint = modint998244353; typedef vector<mint> vm; typedef vector<vector<mint>> vvm; typedef vector<vector<vector<mint>>> vvvm; // Binomial<mint> C(mod); // modpow<mint> mtwo(2), mten(10); //////////////////////////////////////////////////////////////////////////////////////////// /* https:opt-cp.com/fps-implementation/ https:judge.yosupo.jp/submission/42413 を参考に 以下、d:サイズdにresizeする +,-,*,/,>>,<< inv(d):逆数 multiply(g,d):gをconvolution divide(g,d):gで割る eval(a):f(a) log(d):log(f) exp(d):exp(f) pow(k,d):f^k MOD = 998244353(NTT-friendry)の時はfastが使える。 MOD =1000000007などの他の時は使えないので、 define fastをコメントアウトして、その下のnaiveを使う。 (*fpsや/fpsに関わる部分。) */ #define fast #define rep_(i, a_, b_, a, b, ...) \ for(int i = (a), lim##i = (b); i < lim##i; ++i) #define rep2_(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define drep_(i, a_, b_, a, b, ...) \ for(int i = (a) - 1, lim##i = (b); i >= lim##i; --i) #define drep(i, ...) drep_(i, __VA_ARGS__, __VA_ARGS__, __VA_ARGS__, 0) template <typename T> struct Factorial { int MAX; vector<T> fac, finv; Factorial(int m = 0) : MAX(m), fac(m + 1, 1), finv(m + 1, 1) { rep2_(i, 2, MAX + 1) fac[i] = fac[i - 1] * i; finv[MAX] /= fac[MAX]; drep(i, MAX + 1, 3) finv[i - 1] = finv[i] * i; } T binom(int n, int k) { if(k < 0 || n < k) return 0; return fac[n] * finv[k] * finv[n - k]; } T perm(int n, int k) { if(k < 0 || n < k) return 0; return fac[n] * finv[n - k]; } }; Factorial<mint> fc; template <class T> struct FormalPowerSeries : vector<T> { using vector<T>::vector; using vector<T>::operator=; using F = FormalPowerSeries; F operator-() const { F res(*this); for(auto &e : res) e = -e; return res; } F &operator*=(const T &g) { for(auto &e : *this) e *= g; return *this; } F &operator/=(const T &g) { assert(g != T(0)); *this *= g.inv(); return *this; } F &operator+=(const F &g) { int n = this->size(), m = g.size(); rep2_(i, min(n, m))(*this)[i] += g[i]; return *this; } F &operator-=(const F &g) { int n = this->size(), m = g.size(); rep2_(i, min(n, m))(*this)[i] -= g[i]; return *this; } F &operator<<=(const int d) { int n = this->size(); if(d >= n) *this = F(n); this->insert(this->begin(), d, 0); this->resize(n); return *this; } F &operator>>=(const int d) { int n = this->size(); this->erase(this->begin(), this->begin() + min(n, d)); this->resize(n); return *this; } // O(n log n) F inv(int d = -1) const { int n = this->size(); assert(n != 0 && (*this)[0] != 0); if(d == -1) d = n; assert(d >= 0); F res{(*this)[0].inv()}; for(int m = 1; m < d; m *= 2) { F f(this->begin(), this->begin() + min(n, 2 * m)); F g(res); f.resize(2 * m), internal::butterfly(f); g.resize(2 * m), internal::butterfly(g); rep2_(i, 2 * m) f[i] *= g[i]; internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(2 * m), internal::butterfly(f); rep2_(i, 2 * m) f[i] *= g[i]; internal::butterfly_inv(f); T iz = T(2 * m).inv(); iz *= -iz; rep2_(i, m) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } res.resize(d); return res; } #ifdef fast // fast: FMT-friendly modulus only // O(n log n) F &multiply_inplace(const F &g, int d = -1) { int n = this->size(); if(d == -1) d = n; assert(d >= 0); *this = convolution(move(*this), g); this->resize(d); return *this; } F multiply(const F &g, const int d = -1) const { return F(*this).multiply_inplace(g, d); } F &operator*=(const F &g) { int n = this->size(); *this = convolution(move(*this), g); this->resize(n); return *this; } // O(n log n) F ÷_inplace(const F &g, int d = -1) { int n = this->size(); if(d == -1) d = n; assert(d >= 0); *this = convolution(move(*this), g.inv(d)); this->resize(d); return *this; } F divide(const F &g, const int d = -1) const { return F(*this).divide_inplace(g, d); } F &operator/=(const F &g) { int n = (*this).size(); *this = convolution(*this, g.inv(n)); (*this).resize(n); return *this; } #else // naive // // O(n^2) F &multiply_inplace(const F &g) { int n = this->size(), m = g.size(); drep(i, n) { (*this)[i] *= g[0]; rep2_(j, 1, min(i + 1, m))(*this)[i] += (*this)[i - j] * g[j]; } return *this; } F multiply(const F &g) const { return F(*this).multiply_inplace(g); } // O(n^2) F ÷_inplace(const F &g) { assert(g[0] != T(0)); T ig0 = g[0].inv(); int n = this->size(), m = g.size(); rep(i, n) { rep2_(j, 1, min(i + 1, m))(*this)[i] -= (*this)[i - j] * g[j]; (*this)[i] *= ig0; } return *this; } F divide(const F &g) const { return F(*this).divide_inplace(g); } F &operator*=(const F &g) { int n = (*this).size(), m = g.size(); drep(i, n) { (*this)[i] *= g[0]; rep2_(j, 1, min(i + 1, m))(*this)[i] += (*this)[i - j] * g[j]; } return *this; } F &operator/=(const F &g) { assert(g[0] != T(0)); T ig0 = g[0].inv(); int n = (*this).size(), m = g.size(); rep(i, n) { rep2_(j, 1, min(i + 1, m))(*this)[i] -= (*this)[i - j] * g[j]; (*this)[i] *= ig0; } return *this; } #endif // sparse // O(nk) F &multiply_inplace(vector<pair<int, T>> g) { int n = this->size(); auto [d, c] = g.front(); if(d == 0) g.erase(g.begin()); else c = 0; drep(i, n) { (*this)[i] *= c; for(auto &[j, b] : g) { if(j > i) break; (*this)[i] += (*this)[i - j] * b; } } return *this; } F multiply(const vector<pair<int, T>> &g) const { return F(*this).multiply_inplace(g); } F &operator*=(vector<pair<int, T>> g) { int n = (*this).size(); auto [d, c] = g.front(); if(d == 0) g.erase(g.begin()); else c = 0; drep(i, n) { (*this)[i] *= c; for(auto &[j, b] : g) { if(j > i) break; (*this)[i] += (*this)[i - j] * b; } } return *this; } // O(nk) F ÷_inplace(vector<pair<int, T>> g) { int n = this->size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); rep2_(i, n) { for(auto &[j, b] : g) { if(j > i) break; (*this)[i] -= (*this)[i - j] * b; } (*this)[i] *= ic; } return *this; } F divide(const vector<pair<int, T>> &g) const { return F(*this).divide_inplace(g); } F &operator/=(vector<pair<int, T>> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); rep2_(i, n) { for(auto &[j, b] : g) { if(j > i) break; (*this)[i] -= (*this)[i - j] * b; } (*this)[i] *= ic; } return *this; } // multiply and divide (1 + cz^d) // O(n) void multiply_inplace(const int d, const T c) { int n = this->size(); if(c == T(1)) drep(i, n - d)(*this)[i + d] += (*this)[i]; else if(c == T(-1)) drep(i, n - d)(*this)[i + d] -= (*this)[i]; else drep(i, n - d)(*this)[i + d] += (*this)[i] * c; } // O(n) void divide_inplace(const int d, const T c) { int n = this->size(); if(c == T(1)) rep2_(i, n - d)(*this)[i + d] -= (*this)[i]; else if(c == T(-1)) rep2_(i, n - d)(*this)[i + d] += (*this)[i]; else rep2_(i, n - d)(*this)[i + d] -= (*this)[i] * c; } // O(n) T eval(const T &a) const { T x(1), res(0); for(auto e : *this) res += e * x, x *= a; return res; } // O(n) F &integral_inplace() { int n = this->size(); assert(n > 0); if(n == 1) return *this = F{0}; this->insert(this->begin(), 0); this->pop_back(); vector<T> inv(n); inv[1] = 1; int p = T::mod(); rep2_(i, 2, n) inv[i] = -inv[p % i] * (p / i); rep2_(i, 2, n)(*this)[i] *= inv[i]; return *this; } F integral() const { return F(*this).integral_inplace(); } // O(n) F &derivative_inplace() { int n = this->size(); assert(n > 0); rep2_(i, 2, n)(*this)[i] *= i; this->erase(this->begin()); this->push_back(0); return *this; } F derivative() const { return F(*this).derivative_inplace(); } // O(n log n) F &log_inplace(int d = -1) { int n = this->size(); assert(n > 0 && (*this)[0] == 1); if(d == -1) d = n; assert(d >= 0); if(d < n) this->resize(d); F f_inv = this->inv(); this->derivative_inplace(); this->multiply_inplace(f_inv); this->integral_inplace(); return *this; } F log(const int d = -1) const { return F(*this).log_inplace(d); } // O(n log n) // https://arxiv.org/abs/1301.5804 (Figure 1, right) F &exp_inplace(int d = -1) { int n = this->size(); assert(n > 0 && (*this)[0] == 0); if(d == -1) d = n; assert(d >= 0); F g{1}, g_fft{1, 1}; (*this)[0] = 1; this->resize(d); F h_drv(this->derivative()); for(int m = 2; m < d; m *= 2) { // prepare F f_fft(this->begin(), this->begin() + m); f_fft.resize(2 * m), internal::butterfly(f_fft); // Step 2.a' { F _g(m); rep2_(i, m) _g[i] = f_fft[i] * g_fft[i]; internal::butterfly_inv(_g); _g.erase(_g.begin(), _g.begin() + m / 2); _g.resize(m), internal::butterfly(_g); rep2_(i, m) _g[i] *= g_fft[i]; internal::butterfly_inv(_g); _g.resize(m / 2); _g /= T(-m) * m; g.insert(g.end(), _g.begin(), _g.begin() + m / 2); } // Step 2.b'--d' F t(this->begin(), this->begin() + m); t.derivative_inplace(); { // Step 2.b' F r{h_drv.begin(), h_drv.begin() + m - 1}; // Step 2.c' r.resize(m); internal::butterfly(r); rep2_(i, m) r[i] *= f_fft[i]; internal::butterfly_inv(r); r /= -m; // Step 2.d' t += r; t.insert(t.begin(), t.back()); t.pop_back(); } // Step 2.e' if(2 * m < d) { t.resize(2 * m); internal::butterfly(t); g_fft = g; g_fft.resize(2 * m); internal::butterfly(g_fft); rep2_(i, 2 * m) t[i] *= g_fft[i]; internal::butterfly_inv(t); t.resize(m); t /= 2 * m; } else { // この場合分けをしても数パーセントしか速くならない F g1(g.begin() + m / 2, g.end()); F s1(t.begin() + m / 2, t.end()); t.resize(m / 2); g1.resize(m), internal::butterfly(g1); t.resize(m), internal::butterfly(t); s1.resize(m), internal::butterfly(s1); rep2_(i, m) s1[i] = g_fft[i] * s1[i] + g1[i] * t[i]; rep2_(i, m) t[i] *= g_fft[i]; internal::butterfly_inv(t); internal::butterfly_inv(s1); rep2_(i, m / 2) t[i + m / 2] += s1[i]; t /= m; } // Step 2.f' F v(this->begin() + m, this->begin() + min<int>(d, 2 * m)); v.resize(m); t.insert(t.begin(), m - 1, 0); t.push_back(0); t.integral_inplace(); rep2_(i, m) v[i] -= t[m + i]; // Step 2.g' v.resize(2 * m); internal::butterfly(v); rep2_(i, 2 * m) v[i] *= f_fft[i]; internal::butterfly_inv(v); v.resize(m); v /= 2 * m; // Step 2.h' rep2_(i, min(d - m, m))(*this)[m + i] = v[i]; } return *this; } F exp(const int d = -1) const { return F(*this).exp_inplace(d); } // O(n log n) F &pow_inplace(const ll k, int d = -1) { int n = this->size(); if(d == -1) d = n; assert(d >= 0 && k >= 0); if(d == 0) return *this = F(0); if(k == 0) { *this = F(d); (*this)[0] = 1; return *this; } int l = 0; while(l < n && (*this)[l] == 0) ++l; if(l == n || l > (d - 1) / k) return *this = F(d); T c{(*this)[l]}; this->erase(this->begin(), this->begin() + l); *this /= c; this->log_inplace(d - l * k); *this *= k; this->exp_inplace(); *this *= c.pow(k); this->insert(this->begin(), l * k, 0); return *this; } F pow(const ll k, const int d = -1) const { return F(*this).pow_inplace(k, d); } // O(n log n) F &shift_inplace(const T c) { int n = this->size(); fc = Factorial<T>(n); rep2_(i, n)(*this)[i] *= fc.fac[i]; reverse(this->begin(), this->end()); F g(n); T cp = 1; rep2_(i, n) g[i] = cp * fc.finv[i], cp *= c; this->multiply_inplace(g, n); reverse(this->begin(), this->end()); rep2_(i, n)(*this)[i] *= fc.finv[i]; return *this; } F shift(const T c) const { return F(*this).shift_inplace(c); } F operator*(const T &g) const { return F(*this) *= g; } F operator/(const T &g) const { return F(*this) /= g; } F operator+(const F &g) const { return F(*this) += g; } F operator-(const F &g) const { return F(*this) -= g; } F operator<<(const int d) const { return F(*this) <<= d; } F operator>>(const int d) const { return F(*this) >>= d; } F operator*(const F &g) const { return F(*this) *= g; } F operator/(const F &g) const { return F(*this) /= g; } F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; } F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; } }; using fps = FormalPowerSeries<mint>; using sfps = vector<pair<int, mint>>; //////////////////////////////////////////////////////////////////////////////////////////// signed main() { int testcase = 1; // cin >> testcase; for(int i = 0; i < testcase; i++) { solve(); } } void solve() { int n, k; cin >> n >> k; int M = 1000; queue<sfps> q; rep(i, 1, n + 1) q.push({{0, 1}, {i, -1}}); fps f(n + 1); f[0] = 1; while(q.size() >= 2) { auto a = q.front(); q.pop(); auto b = q.front(); q.pop(); unordered_map<int, mint> dp; for(auto [ax, ac] : a) for(auto [bx, bc] : b) { if(ax + bx > n) continue; dp[ax + bx] += ac * bc; } sfps c; for(auto [x, m] : dp) { if(m == 0) continue; c.push_back({x, m}); } if(c.size() > M) { vm g(n + 1); for(auto [x, m] : c) g[x] += m; f = convolution(f, g); f.resize(n + 1); continue; } q.push(c); } if(!q.empty()) { auto c = q.front(); vm g(n + 1); for(auto [x, m] : c) g[x] += m; f = convolution(f, g); f.resize(n + 1); } fps f2(n + 1); rep(i, n + 1) { if(i * (k + 1) <= n) f2[i * (k + 1)] += f[i]; } debug(f); auto ans = f2 / f; rep(i, 1, n + 1) cout << (ans[i]) << ' '; out(); }