結果

問題 No.1170 Never Want to Walk
ユーザー i_takui_taku
提出日時 2024-05-17 16:03:06
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,141 ms / 2,000 ms
コード長 6,541 bytes
コンパイル時間 696 ms
コンパイル使用メモリ 81,956 KB
実行使用メモリ 184,708 KB
最終ジャッジ日時 2024-12-20 11:46:32
合計ジャッジ時間 15,170 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 69 ms
68,596 KB
testcase_01 AC 68 ms
68,048 KB
testcase_02 AC 68 ms
68,644 KB
testcase_03 AC 68 ms
69,132 KB
testcase_04 AC 67 ms
68,932 KB
testcase_05 AC 66 ms
68,192 KB
testcase_06 AC 67 ms
68,528 KB
testcase_07 AC 68 ms
68,816 KB
testcase_08 AC 69 ms
69,836 KB
testcase_09 AC 69 ms
70,516 KB
testcase_10 AC 70 ms
68,528 KB
testcase_11 AC 69 ms
68,332 KB
testcase_12 AC 116 ms
78,236 KB
testcase_13 AC 128 ms
79,432 KB
testcase_14 AC 118 ms
78,260 KB
testcase_15 AC 122 ms
78,840 KB
testcase_16 AC 117 ms
78,376 KB
testcase_17 AC 119 ms
78,780 KB
testcase_18 AC 112 ms
78,776 KB
testcase_19 AC 112 ms
78,620 KB
testcase_20 AC 124 ms
79,132 KB
testcase_21 AC 113 ms
78,448 KB
testcase_22 AC 106 ms
78,364 KB
testcase_23 AC 105 ms
77,944 KB
testcase_24 AC 107 ms
78,700 KB
testcase_25 AC 108 ms
78,512 KB
testcase_26 AC 105 ms
78,316 KB
testcase_27 AC 1,141 ms
184,656 KB
testcase_28 AC 992 ms
184,236 KB
testcase_29 AC 1,083 ms
181,508 KB
testcase_30 AC 1,036 ms
180,900 KB
testcase_31 AC 1,008 ms
184,236 KB
testcase_32 AC 728 ms
180,344 KB
testcase_33 AC 703 ms
184,332 KB
testcase_34 AC 743 ms
181,108 KB
testcase_35 AC 738 ms
181,148 KB
testcase_36 AC 732 ms
184,708 KB
testcase_37 AC 693 ms
184,068 KB
testcase_38 AC 726 ms
181,328 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://github.com/tatyam-prime/SortedSet/tree/main
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')
 
class SortedSet(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170
 
    def _build(self, a=None) -> None:
        "Evenly divide `a` into buckets."
        if a is None: a = list(self)
        size = self.size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
        a = list(a)
        if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
            a = sorted(set(a))
        self._build(a)
 
    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j
 
    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedSet" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"
 
    def _find_bucket(self, x: T) -> List[T]:
        "Find the bucket which should contain x. self must not be empty."
        for a in self.a:
            if x <= a[-1]: return a
        return a
 
    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        return i != len(a) and a[i] == x
 
    def add(self, x: T) -> bool:
        "Add an element and return True if added. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return True
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i != len(a) and a[i] == x: return False
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()
        return True
 
    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i == len(a) or a[i] != x: return False
        a.pop(i)
        self.size -= 1
        if len(a) == 0: self._build()
        return True
    
    def lt(self, x: T) -> Union[T, None]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]
 
    def le(self, x: T) -> Union[T, None]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]
 
    def gt(self, x: T) -> Union[T, None]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]
 
    def ge(self, x: T) -> Union[T, None]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, x: int) -> T:
        "Return the x-th element, or IndexError if it doesn't exist."
        if x < 0: x += self.size
        if x < 0: raise IndexError
        for a in self.a:
            if x < len(a): return a[x]
            x -= len(a)
        raise IndexError
    
    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans
 
    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans


class UnionFind:
    def __init__(self, n):
        self._n = n
        self._parent = [-1] * n
        self._roots = set(range(n))

    def _find(self, x):
        if self._parent[x] < 0:
            return x
        self._parent[x] = self._find(self._parent[x])
        return self._parent[x]

    def union(self, x, y):
        x, y = self._find(x), self._find(y)
        if x == y:
            return
        if self._parent[y] < self._parent[x]:
            x, y = y, x
        self._parent[x] += self._parent[y]
        self._parent[y] = x
        self._roots.discard(y)

    def same(self, x, y):
        return self._find(x) == self._find(y)
    
    def size(self, x):
        return -self._parent[self._find(x)]

    def members(self, x):
        root = self._find(x)
        return [i for i in range(self._n) if self._find(i) == root]
    
    def all_group_members(self):
        group_members = dict()
        for member in range(self._n):
            root = self._find(member)
            if root not in group_members:
                group_members[root] = []
            group_members[root].append(member)
        return group_members

    def root(self, x):
        return self._find(x)

    def roots(self):
        return self._roots
    
    def group_count(self):
        return len(self.roots())
    
    def group_numbers(self):
        return [self._find(i) for i in range(self._n)]
    
    def __str__(self):
        return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items())
    
N, A, B = map(int, input().split())
X = list(map(int, input().split()))
I = {x: i for i, x in enumerate(X)}
S = SortedSet(X)
uf = UnionFind(N)
rm = []
while S:
    sx = S[0]
    S.discard(sx)
    stack = [sx]
    while stack:
        x = stack.pop()
        ldx1 = S.index(x - B)
        rdx1 = S.index(x - A + 1)
        ldx2 = S.index(x + A)
        rdx2 = S.index(x + B + 1)
        for R in range(ldx1, rdx1), range(ldx2, rdx2):
            for idx in R:
                if not 0 <= idx < len(S):
                    continue
                nx = S[idx]
                if A <= abs(x - nx) <= B:
                    uf.union(I[x], I[nx])
                    rm.append(nx)
                    stack.append(nx)
        while rm:
            S.discard(rm.pop())
for i in range(N):
    print(uf.size(i))
0