結果
| 問題 |
No.1170 Never Want to Walk
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-05-17 16:03:06 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,141 ms / 2,000 ms |
| コード長 | 6,541 bytes |
| コンパイル時間 | 696 ms |
| コンパイル使用メモリ | 81,956 KB |
| 実行使用メモリ | 184,708 KB |
| 最終ジャッジ日時 | 2024-12-20 11:46:32 |
| 合計ジャッジ時間 | 15,170 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 37 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/tree/main
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a=None) -> None:
"Evenly divide `a` into buckets."
if a is None: a = list(self)
size = self.size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
a = sorted(set(a))
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _find_bucket(self, x: T) -> List[T]:
"Find the bucket which should contain x. self must not be empty."
for a in self.a:
if x <= a[-1]: return a
return a
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a = self._find_bucket(x)
i = bisect_left(a, x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a = self._find_bucket(x)
i = bisect_left(a, x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
return True
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a = self._find_bucket(x)
i = bisect_left(a, x)
if i == len(a) or a[i] != x: return False
a.pop(i)
self.size -= 1
if len(a) == 0: self._build()
return True
def lt(self, x: T) -> Union[T, None]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Union[T, None]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Union[T, None]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Union[T, None]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, x: int) -> T:
"Return the x-th element, or IndexError if it doesn't exist."
if x < 0: x += self.size
if x < 0: raise IndexError
for a in self.a:
if x < len(a): return a[x]
x -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
class UnionFind:
def __init__(self, n):
self._n = n
self._parent = [-1] * n
self._roots = set(range(n))
def _find(self, x):
if self._parent[x] < 0:
return x
self._parent[x] = self._find(self._parent[x])
return self._parent[x]
def union(self, x, y):
x, y = self._find(x), self._find(y)
if x == y:
return
if self._parent[y] < self._parent[x]:
x, y = y, x
self._parent[x] += self._parent[y]
self._parent[y] = x
self._roots.discard(y)
def same(self, x, y):
return self._find(x) == self._find(y)
def size(self, x):
return -self._parent[self._find(x)]
def members(self, x):
root = self._find(x)
return [i for i in range(self._n) if self._find(i) == root]
def all_group_members(self):
group_members = dict()
for member in range(self._n):
root = self._find(member)
if root not in group_members:
group_members[root] = []
group_members[root].append(member)
return group_members
def root(self, x):
return self._find(x)
def roots(self):
return self._roots
def group_count(self):
return len(self.roots())
def group_numbers(self):
return [self._find(i) for i in range(self._n)]
def __str__(self):
return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items())
N, A, B = map(int, input().split())
X = list(map(int, input().split()))
I = {x: i for i, x in enumerate(X)}
S = SortedSet(X)
uf = UnionFind(N)
rm = []
while S:
sx = S[0]
S.discard(sx)
stack = [sx]
while stack:
x = stack.pop()
ldx1 = S.index(x - B)
rdx1 = S.index(x - A + 1)
ldx2 = S.index(x + A)
rdx2 = S.index(x + B + 1)
for R in range(ldx1, rdx1), range(ldx2, rdx2):
for idx in R:
if not 0 <= idx < len(S):
continue
nx = S[idx]
if A <= abs(x - nx) <= B:
uf.union(I[x], I[nx])
rm.append(nx)
stack.append(nx)
while rm:
S.discard(rm.pop())
for i in range(N):
print(uf.size(i))