結果
問題 | No.2757 Pin Game |
ユーザー | mamenta |
提出日時 | 2024-05-17 21:28:08 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 44 ms / 2,000 ms |
コード長 | 22,224 bytes |
コンパイル時間 | 2,614 ms |
コンパイル使用メモリ | 199,352 KB |
実行使用メモリ | 21,836 KB |
最終ジャッジ日時 | 2024-12-20 13:12:11 |
合計ジャッジ時間 | 3,487 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 7 ms
19,908 KB |
testcase_01 | AC | 6 ms
19,780 KB |
testcase_02 | AC | 7 ms
19,908 KB |
testcase_03 | AC | 6 ms
19,908 KB |
testcase_04 | AC | 42 ms
21,836 KB |
testcase_05 | AC | 44 ms
21,828 KB |
testcase_06 | AC | 7 ms
19,908 KB |
testcase_07 | AC | 7 ms
19,908 KB |
testcase_08 | AC | 7 ms
19,904 KB |
testcase_09 | AC | 7 ms
19,780 KB |
testcase_10 | AC | 20 ms
20,420 KB |
testcase_11 | AC | 18 ms
20,296 KB |
ソースコード
#include<iostream>#include<functional>#include<vector>#include<set>#include<queue>#include<map>#include<algorithm>#include<numeric>#include<cmath>#include<cstring>#include<bitset>#include<iomanip>#include<random>#include<fstream>#include<complex>#include<time.h>#include<stack>#include<cassert>using namespace std;#define endl "\n"#define ll long long#define ch char#define vec vector#define vll vector<ll>#define sll set<ll>#define pll pair<ll,ll>#define mkp make_pair#define mll map<ll,ll>#define puf push_front#define pub push_back#define pof pop_front()#define pob pop_back()#define em empty()#define fi first#define se second#define fr front()#define ba back()#define be begin()#define rbe rbegin()#define en end()#define ren rend()#define all(x) x.begin(),x.end()#define rall(x) x.rbegin(),x.rend()#define fo(i,x,y) for(ll i=x;i<=y;++i)#define fa(i,v) for(auto &i:v)#define re return#define sz size()#define so(v) sort(all(v))#define pop_count(x) __builtin_popcount(x)#define rso(v) sort(rall(v))#define rev(v) reverse(all(v))#define i(x) for(ll i=0;i<x;++i)#define j(x) for(ll j=0;j<x;++j)#define k(x) for(ll k=0;k<x;++k)#define xx(k) while(k--)#define wh(x) while(x)#define st string//10^x 8765432109876543210#define MAX 8611686018427387000#define zeros(x) __builtin_ctzll(x)#define in insert#define uniq(v) v.erase(unique(all(v)),v.en);#define er(i,n) erase(i,n);//#define co(x,a) count(all(x),a)#define lo(v,a) lower_bound(v.begin(),v.end(),a)#define up(v,a) upper_bound(v.begin(),v.end(),a)#define dou double#define ge(x,...) x __VA_ARGS__; ci(__VA_ARGS__);#define fix(n,ans) cout<<fixed<<std::setprecision(n)<<ans<<endl;void cc(){ cout<<endl; };void ff(){ cout<<endl; };void cl(){ cout<<endl; };template<class T,class... A> void ff(T a,A... b){ cout<<a; (cout<<...<<(cout<<' ',b)); cout<<endl; };template<class T,class... A> void cc(T a,A... b){ cout<<a; (cout<<...<<(cout<<' ',b)); cout<<' '; };template<class T,class... A> void cl(T a,A... b){ cout<<a; (cout<<...<<(cout<<'\n',b)); cout<<endl; };template<class T,class... A> void cn(T a,A... b){ cout<<a; (cout<<...<<(cout<<"",b)); };template<class... A> void ci(A&... a){ (cin>>...>>a); };template<class T>void ou(T v){fa(i,v)cout<<i<<" ";cout<<endl;}template<class T>void oun(T v){fa(i,v)cout<<i;cout<<endl;}template<class T>void ouu(T v){fa(i,v){fa(j,i)cout<<j<<" ";cout<<endl;}}template<class T> void oul(T v){fa(i,v)cout<<i<<endl;}template<class T>void in(T &v){fa(i,v)cin>>i;}template<class T>void inn(T &v){fa(i,v)fa(j,i)cin>>j;}template<class T>void oump(T &v){fa(i,v)ff(i.fi,i.se);}template<class T,class A>void pi(pair<T,A> &p){ci(p.fi,p.se);}template<class T,class A>void po(pair<T,A> &p){ff(p.fi,p.se);}template<class T,class... A> void fl(T a,A... b){ cout<<a; (cout<<...<<(cout<<' ',b)); cout<<endl<<flush; };ll mod = 1000000007;ll mod9= 998244353;void init();void solve();/*void ori();ll random_(){std::random_device seed_gen;std::mt19937 engine(seed_gen());// [-1.0, 1.0)の値の範囲で、等確率に実数を生成するstd::uniform_real_distribution<> dist1(1.0, 100000);i(10000){ // 各分布法に基いて乱数を生成ll n = dist1(engine);} return 0;}*/mll to_prime(ll x){mll mp;for(ll i=2;i*i<=x;++i){while(x%i==0){++mp[i];x/=i;}}if(x!=1)++mp[x];re mp;}#define acc(v) accumulate(v.begin(),v.end(),0LL)#define acci(v,i) accumulate(v.begin(),v.begin()+i,0LL)#define dll deque<ll>int main(void){init();solve();return 0;}template <typename T>class pnt{public:T x,y;pnt(T x=0,T y=0):x(x),y(y){}pnt operator + (const pnt r)const {return pnt(x+r.x,y+r.y);}pnt operator - (const pnt r)const {return pnt(x-r.x,y-r.y);}pnt operator * (const pnt r)const {return pnt(x*r.x,y*r.y);}pnt operator / (const pnt r)const {return pnt(x/r.x,y/r.y);}pnt &operator += (const pnt r){x+=r.x;y+=r.y;return *this;}pnt &operator -= (const pnt r){x-=r.x;y-=r.y;return *this;}pnt &operator *= (const pnt r){x*=r.x;y*=r.y;return *this;}pnt &operator /= (const pnt r){x/=r.x;y/=r.y;return *this;}ll dist(const pnt r){re (x-r.x)*(x-r.x)+(y-r.y)*(y-r.y);}ll man(const pnt r){re abs(x-r.x)+abs(y-r.y);}pnt rot(const dou theta){T xx,yy;xx=cos(theta)*x-sin(theta)*y;yy=sin(theta)*x+cos(theta)*y;return pnt(xx,yy);}};istream &operator >> (istream &is,pnt<dou> &r){is>>r.x>>r.y;return is;}ostream &operator << (ostream &os,pnt<dou> &r){os<<r.x<<" "<<r.y;return os;}struct BIT{ll n;vll v;BIT(ll n):n(n+n%2),v(2*(n+n%2)){};ll op(ll x,ll y){re gcd(x,y);}ll sum(ll i){ll s=0;while(i){s=gcd(s,v[i]);i-=i&-i;}re s;}void add(ll i,ll x){while(i<=n){v[i]=op(v[i],x);i+=i&-i;}}ll ran(ll l,ll r){re op(sum(--l),sum(r));}};template<class T>bool chmaxeq(T& a, const T& b) { if (a <= b) { a = b; return 1; } return 0; }template<class T>bool chmineq(T& a, const T& b) { if (b <= a) { a = b; return 1; } return 0; }template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }struct Trie{struct Node{vll nxt;vec<st> done;ll dep,cnt=0;Node(ll c_):nxt(30),dep(c_){}};ll root=0;vec<Node>tree={Node(root)};void ins(st s){ll c=0;for(ll i=0;i<s.sz;++i){ll to=tree[c].nxt[s[i]-'a'];if(to==0){to=tree.sz;tree[c].nxt[s[i]-'a']=to;tree.pub(Node(i+1));}++tree[to].cnt;c=to;}tree[c].done.pub(s);}ll cal(st s){ll ans=0,c=0;for(ll i=0;i<s.sz;++i){ll to=tree[c].nxt[s[i]-'a'];if(tree[to].cnt>1)++ans;else break;c=to;}re ans;}};#define fo(i,x,y) for(ll i=x;i<=y;++i)#define rfo(_ii,_xx,_yy) for(ll _ii=_xx;_ii>=_yy;--_ii)#define qll queue<ll>template<typename T> using pq= priority_queue<T>;template<typename T> using pqg= priority_queue<T,vec<T>,greater<T>>;vec<pair<ch,ll>>rle(st s){//run_length_encodingll n=s.sz;vec<pair<ch,ll>>ans;for(ll i=0;i<n;++i){ll cnt=1;wh(i+1<n&&s[i+1]==s[i]){++cnt;++i;}ans.pub(mkp(s[i],cnt));}re ans;}vector<vector<ll>> mat_mul(vector<vector<ll>> a, vector<vector<ll>> b, ll mod) {// 行列乗算int n = a.size();vector<vector<ll>> res(n, vector<ll>(n));for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {for (int k = 0; k < n; k++) {res[i][j] += a[i][k] * b[k][j];res[i][j] %= mod;}}}return res;}vector<vector<ll>> mat_pow(vector<vector<ll>> a, ll b, ll mod) {// 行列累乗int n = a.size();vector<vector<ll>> res(n, vector<ll>(n));for (int i = 0; i < n; i++) res[i][i] = 1;while (b) {if (b & 1) res = mat_mul(res, a, mod);a = mat_mul(a, a, mod);b >>= 1;}return res;}void Yes(bool f){ff(f?"Yes":"No");re;}void yes(bool f){ff(f?"yes":"no");re;}void YES(bool f){ff(f?"YES":"NO");re;}void sub();template <class T>struct Edge {int rv, from, to; // rev:逆向きの辺の番号T cap, original_cap;Edge(int f, int t, T c,int r ) : rv(r), from(f), to(t), cap(c), original_cap(c) {}};template <class T>struct Graph {vector<vector<Edge<T>>> G;Graph(int n = 0) : G(n) {}vector<Edge<T>>& operator[](int i) { return G[i]; }//G[i]でi番目の辺を返すconst size_t size() const { return G.size(); }//Edge<T>& redge(Edge<T> e) { // 逆向きの辺を返すreturn G[e.to][e.rv]; // 自己ループはないと仮定(あれば G[e.to][e.rev + 1] とする必要がある)}void add_edg(int from, int to, T cap) { // 有向辺を加えるG[from].push_back( Edge<T>( from, to, cap,(int)G[to].size() ));G[to].push_back(Edge<T>( to, from, 0 ,(int)G[from].size() - 1));}};/* FordFulkerson: Ford-Fulkersonのアルゴリズムで最大流を求める構造体max_flow(G,s,t):sからtへのグラフGの最大流を求める副作用:G は最大流の残余ネットワークになる計算量: O(|f*||E|) (f*:最大流) (この最悪ケースになることはほぼ無い)*/template <class T>struct Ford {const T INF = 1e9;vector<int> used;Ford(){};T dfs(Graph<T>& G, int v, int t, T f) { // 増加可能経路を見つけて増加分のフローを返すif (v == t) return f;used[v] = true;for (auto& e : G[v]) {if (!used[e.to] && e.cap > 0) {T d = dfs(G, e.to, t, min(f, e.cap));if (d > 0) {e.cap -= d;G.redge(e).cap += d;return d;}}}return 0;}T max_flow(Graph<T>& G, int s, int t) {T flow = 0;while (true) {used.assign(G.size(), 0);T f = dfs(G, s, t, INF); // f が増加分のフローif (f == 0) {return flow;} else {flow += f;}}return 0;}/*Ford<ll>f;ff(f.max_flow(g,s,sink));*/};struct UF{ vll par,rk,siz; UF(ll n):par(n+5,-1),rk(n+5,0){ }ll root(ll x){ if(par[x]<0)return x; else return par[x]=root(par[x]); }bool same(ll x,ll y){ return root(x)==root(y); }bool unite(ll x,ll y){ll rx=root(x),ry=root(y);if(rx==ry) return 0;if(rk[rx]<rk[ry]) swap(rx,ry);par[rx]+=par[ry]; par[ry]=rx;if(rk[rx]==rk[ry]) rk[rx]++; return 1;}ll size(ll x){ return -par[root(x)]; }};ll dijkstra(ll start,ll n){//O((n+m)log(n))vec<vec<pll>>e(n);vll dis(n+50,MAX);pqg<pll>q;q.push({0ll,start});dis[start]=0;while(q.em^1){auto [d,now]=q.top();q.pop();if(dis[now]<d)continue;if(now==n)re dis[now];for(auto[to,cst]:e[now])if(chmin(dis[to],cst+d)){q.push({dis[to],to});}}re -1;}struct UF_norank{ vll par,siz; UF_norank(ll n):par(n+5,-1){ }ll root(ll x){ if(par[x]<0)return x; else return par[x]=root(par[x]); }bool same(ll x,ll y){ return root(x)==root(y); }bool unite(ll from,ll to){ll r_fr=root(from),r_to=root(to);if(r_fr==r_to) return 0;par[r_to]+=par[r_fr]; par[r_fr]=r_to;return 1;}ll size(ll x){ return -par[root(x)]; }};vll di(ll start,ll n,vec<vec<pll>>cost){//O((n+m)log(n))vll dis(n+5,MAX);pqg<pll>q;q.push({0ll,start});dis[start]=0;while(q.em^1){auto [d,now]=q.top();q.pop();if(dis[now]<d)continue;//if(now==goal)break;for(auto [to,cst]:cost[now]){if(chmin(dis[to],cst+d)){q.push({dis[to],to});}}}re dis;}vll z_algo(string pattern, string text) {//z algorithm 最長共通接頭辞string str = pattern + "$" + text;ll n = str.length(),np=pattern.sz;vll Z(n+5),ret(n+5);for (ll i = 1,L=0,R=0,j; i < n; ++i) {if (R<i) {L = R = i;while (R<n && str[R-L] == str[R])R++;Z[i] = R-L;if(i>np)ret[i-np-1]=Z[i];R--;}else{j= i-L;if (Z[j]<R-i+1){Z[i]=Z[j];}else{L = i;while (R<n && str[R-L] == str[R])R++;Z[i] = R-L;R--;}if(i>np)ret[i-np-1]=Z[i];}}//ff("z"); ou(Z);re ret;}// 2^10 = 1024//vll dy={-1,-1,-1,0,0,1,1,1},dx={-1,0,1,-1,1,-1,0,1};/* O(2*10^8) 9*10^18 1LL<<62 4*10^18~~(v.be,v.be+n,x); not include v.be+nset.lower_bound(x);->. *++~ ! /%* +- << < == & && +=?:*/// 12345678901234567890//vll dy={-1,0,0,1},dx={0,-1,1,0};const ll INF = mod * mod;typedef pair<int, int>P;#define per(i,n) for(int i=n-1;i>=0;i--)#define Rep(i,sta,n) for(int i=sta;i<n;i++)#define rp(i,n) for(int i=0;i<n;i++)#define rep1(i,n) for(int i=1;i<=n;i++)#define per1(i,n) for(int i=n;i>=1;i--)#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)ll mod_pow(ll x, ll n, ll m = mod) {if (n < 0) {ll res = mod_pow(x, -n, m);return mod_pow(res, m - 2, m);}if (abs(x) >= m)x %= m;if (x < 0)x += m;//if (x == 0)return 0;ll res = 1;while (n) {if (n & 1)res = res * x % m;x = x * x % m; n >>= 1;}return res;}//mod should be <2^31struct mint {int n;mint() :n(0) { ; }mint(ll m) {if (m < 0 || mod <= m) {m %= mod; if (m < 0)m += mod;}n = m;}operator int() { return n; }};bool operator==(mint a, mint b) { return a.n == b.n; }bool operator<(mint a, mint b) { return a.n < b.n; }mint operator+=(mint& a, mint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }mint operator-=(mint& a, mint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }mint operator*=(mint& a, mint b) { a.n = ((ll)a.n * b.n) % mod; return a; }mint operator+(mint a, mint b) { return a += b; }mint operator-(mint a, mint b) { return a -= b; }mint operator*(mint a, mint b) { return a *= b; }mint operator^(mint a, ll n) {if (n == 0)return mint(1);mint res = (a * a) ^ (n / 2);if (n % 2)res = res * a;return res;}ll inv(ll a, ll p) {return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);}mint operator/(mint a, mint b) { return a * mint(inv(b, mod)); }mint operator/=(mint& a, mint b) { a = a / b; return a; }bool operator==(mint a, ll b) {re a==mint(b);}bool operator<(mint a, ll b) {re a<mint(b);}mint operator+=(mint& a, ll b) {re a+=mint(b);}mint operator-=(mint& a, ll b) {re a-=mint(b);}mint operator*=(mint& a, ll b) {re a*=mint(b);}mint operator+(mint a, ll b) {re a+mint(b);}mint operator-(mint a, ll b) {re a-mint(b);}mint operator*(mint a, ll b) {re a*mint(b);}mint operator/(mint a, ll b) {re a/mint(b);}mint operator/=(mint& a, ll b) {re a/=mint(b);}bool operator==(ll a, mint b) {re mint(a)==b;}bool operator<(ll a, mint b) {re mint(a)<(b);}mint operator+(ll a, mint b) {re mint(a)+(b);}mint operator-(ll a, mint b) {re mint(a)-(b);}mint operator*(ll a, mint b) {re mint(a)*(b);}mint operator/(ll a, mint b) {re mint(a)/(b);}bool operator==(mint a, int b) {re a==mint(b);}bool operator<(mint a, int b) {re a<mint(b);}mint operator+=(mint& a, int b) {re a+=mint(b);}mint operator-=(mint& a, int b) {re a-=mint(b);}mint operator*=(mint& a, int b) {re a*=mint(b);}mint operator+(mint a, int b) {re a+mint(b);}mint operator-(mint a, int b) {re a-mint(b);}mint operator*(mint a, int b) {re a*mint(b);}mint operator/(mint a, int b) {re a/mint(b);}mint operator/=(mint& a, int b) {re a/=mint(b);}bool operator==(int a, mint b) {re mint(a)==b;}bool operator<(int a, mint b) {re mint(a)<(b);}mint operator+(int a, mint b) {re mint(a)+(b);}mint operator-(int a, mint b) {re mint(a)-(b);}mint operator*(int a, mint b) {re mint(a)*(b);}mint operator/(int a, mint b) {re mint(a)/(b);}//istream &operator >> (istream &is,pnt<dou> &r){is>>r.x>>r.y;return is;}//ostream &operator << (ostream &os,pnt<dou> &r){os<<r.x<<" "<<r.y;return os;}istream &operator >> (istream &is, mint &x){ll m;is >> m;if (m < 0 || mod <= m) {m %= mod; if (m < 0)m += mod;}x.n = m;return is;}ostream &operator << (ostream &os, mint &i){os << i.n;return os;}const int max_n = 1 << 21;mint fact[max_n], factinv[max_n];void init_f() {fact[0] = mint(1);for (int i = 0; i < max_n - 1; i++) {fact[i + 1] = fact[i] * mint(i + 1);}factinv[max_n - 1] = mint(1) / fact[max_n - 1];for (int i = max_n - 2; i >= 0; i--) {factinv[i] = factinv[i + 1] * mint(i + 1);}}mint comb(int a, int b) {if (a < 0 || b < 0 || a < b)return 0;return fact[a] * factinv[b] * factinv[a - b];}mint combP(int a, int b) {if (a < 0 || b < 0 || a < b)return 0;return fact[a] * factinv[a - b];}ll gcd(ll a, ll b) {a = abs(a); b = abs(b);if (a < b)swap(a, b);while (b) {ll r = a % b; a = b; b = r;}return a;}/* SegTreeLazy<X,M>(n,fx,fa,fm,ex,em): モノイド(集合X, 二項演算fx,fa,fm, 単位元ex,em)についてサイズnで構築set(int i, X x), build(): i番目の要素をxにセット。まとめてセグ木を構築する。O(n)update(i,x): i 番目の要素を x に更新。O(log(n))query(a,b): [a,b) 全てにfxを作用させた値を取得。O(log(n))*/template <class X, class A> struct SegTreeLazy {using FX = function<X(X, X)>;using FAX = function<X(A,X)>;using FA = function<A(A, A)>;int n;FX opx;FAX opax;FA opa;const X ex;const A ea;vector<X> dat;vector<A> lazy;SegTreeLazy(int n_, FX opx_, X ex_, FAX opax_, FA opa_, A ea_): n(), opx(opx_), opax(opax_), opa(opa_), ex(ex_), ea(ea_), dat(n_ * 4, ex), lazy(n_ * 4, ea) {int x = 1;while (n_ > x) x *= 2;n = x;}void set(int i, X x) { dat[i + n - 1] = x; }void build() {for (int k = n - 2; k >= 0; k--) dat[k] = opx(dat[2 * k + 1], dat[2 * k + 2]);}/* lazy eval */void eval(int k) {if (lazy[k] == ea) return; // 更新するものが無ければ終了if (k < n - 1) { // 葉でなければ子に伝搬lazy[k * 2 + 1] = opa(lazy[k * 2 + 1], lazy[k]);lazy[k * 2 + 2] = opa(lazy[k * 2 + 2], lazy[k]);}// 自身を更新dat[k] = opax(lazy[k],dat[k]);lazy[k] = ea;}void update(int a, int b, A x, int k, int l, int r) {eval(k);if (a <= l && r <= b) { // 完全に内側の時lazy[k] = opa(lazy[k], x);eval(k);} else if (a < r && l < b) { // 一部区間が被る時update(a, b, x, k * 2 + 1, l, (l + r) / 2); // 左の子update(a, b, x, k * 2 + 2, (l + r) / 2, r); // 右の子dat[k] = opx(dat[k * 2 + 1], dat[k * 2 + 2]);}}void update(int a, int b, A x) { update(a, b, x, 0, 0, n); }X query_sub(int a, int b, int k, int l, int r) {eval(k);if (r <= a || b <= l) { // 完全に外側の時return ex;} else if (a <= l && r <= b) { // 完全に内側の時return dat[k];} else { // 一部区間が被る時X vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2);X vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r);return opx(vl, vr);}}X query(int a, int b) { return query_sub(a, b, 0, 0, n); }};using X=mint;struct S{//a*x+b;mint a;mint b;S(mint _a=mint(1),mint _b=mint(0)):a(_a),b(_b){;}};bool operator==(S a, S b) {re a.a==b.a && a.b==b.b;}using A=S;X opx(X x1,X x2){return x1+x2;}X ex=0;X opax(A a,X x){return a.a*x+a.b;}A opa(A a1,A a2){A a=a1;a.a*=a2.a;a.b*=a2.a;a.b+=a2.b;return a;}A ea ;//SegTreeLazy<X,A> sg(2*n,opx,ex,opax,opa,ea);struct HLD {int n;vector<int> siz, top, dep, parent, in, out, seq;vector<vector<int>> adj;int cur;HLD() {}HLD(int n) {init(n);}void init(int n) {//初期化this->n = n;siz.resize(n);//部分木のサイズtop.resize(n);//列の先頭dep.resize(n);//深さparent.resize(n);//親in.resize(n); //新しい番号out.resize(n);//部分木の最後の番号+1seq.resize(n);//order iの頂点はseq[i]cur = 0;adj.assign(n, {});//隣接リスト}void add(int u, int v) {//辺を追加adj[u].push_back(v);adj[v].push_back(u);}void work(int root = 0) {//ビルドtop[root] = root;dep[root] = 0;parent[root] = -1;dfs1(root);dfs2(root);}void dfs1(int u) {if (parent[u] != -1) {adj[u].erase(find(adj[u].begin(), adj[u].end(), parent[u]));//親を隣接リストから消す}siz[u] = 1;for (auto &v : adj[u]) {parent[v] = u;dep[v] = dep[u] + 1;dfs1(v);siz[u] += siz[v];//adj[u][0]をheavyになるようにするif (siz[v] > siz[adj[u][0]]) {swap(v, adj[u][0]);}}}void dfs2(int u) {in[u] = cur++;//新しい番号を割り振るseq[in[u]] = u;//order in[u]の頂点はufor (auto v : adj[u]) {top[v] = v == adj[u][0] ? top[u] : v;dfs2(v);}out[u] = cur;}int lca(int u, int v) {while (top[u] != top[v]) {//同じ列でない間if (dep[top[u]] > dep[top[v]]) {//深い方から上るu = parent[top[u]];} else {v = parent[top[v]];}}return dep[u] < dep[v] ? u : v;}int dist(int u, int v) {return dep[u] + dep[v] - 2 * dep[lca(u, v)];}int jump(int u, int k) {if (dep[u] < k) {return -1;}int d = dep[u] - k;while (dep[top[u]] > d) {u = parent[top[u]];}return seq[in[u] - dep[u] + d];}bool isAncester(int u, int v) {return in[u] <= in[v] && in[v] < out[u];}int rootedChild(int u, int v) {if (u == v) {return u;}if (!isAncester(u, v)) {return parent[u];}auto it = std::upper_bound(adj[u].begin(), adj[u].end(), v, [&](int x, int y) {return in[x] < in[y];}) - 1;return *it;}int rootedSize(int u, int v) {if (u == v) {return n;}if (!isAncester(v, u)) {return siz[v];}return n - siz[rootedChild(v, u)];}int rootedLca(int a, int b, int c) {return lca(a, b) ^ lca(b, c) ^ lca(c, a);}};struct SegTree{ll n=1;vll v;SegTree(ll _n){while(n<_n)n*=2;v.resize(n*2,0ll);}ll op(ll a,ll b){re a+b;}void update(ll pos,ll val){pos+=n-1;v[pos]=op(v[pos],val);//v[pos]=val;while(pos){pos=(pos-1)/2;v[pos]=op(v[pos],val);}}ll ran(ll l,ll r){re sub(l,r,0ll,0ll ,n-1);}ll sub(ll l,ll r,ll nowl,ll now,ll nowr){if(nowr<l||r<nowl) re 0ll;if(l<=nowl&&nowr<=r)re v[now];ll vall=sub(l,r,nowl,(now*2)+1,(nowl+nowr)/2);ll valr=sub(l,r,(nowl+nowr)/2+1,(now*2)+2,nowr);re op(vall,valr);}};void init(){ios::sync_with_stdio(false);cin.tie(0);}void solve(){//ge(ll,t);ll t=1;xx(t){sub();}}void sub() {ge(ll,n,k);vll v(n);in(v);ll ans=0;for(ll i=0;i<n;){++ans;ll l=v[i];while(i<n&&v[i]<l+k)++i;}ff(ans);}