結果

問題 No.2762 Counting and Deleting
ユーザー akakimidori
提出日時 2024-05-17 21:32:50
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 255 ms / 4,000 ms
コード長 28,640 bytes
コンパイル時間 15,021 ms
コンパイル使用メモリ 401,328 KB
実行使用メモリ 15,144 KB
最終ジャッジ日時 2024-12-20 13:17:39
合計ジャッジ時間 18,542 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 15
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: type alias `Map` is never used
 --> src/main.rs:4:6
  |
4 | type Map<K, V> = BTreeMap<K, V>;
  |      ^^^
  |
  = note: `#[warn(dead_code)]` on by default

warning: type alias `Deque` is never used
 --> src/main.rs:6:6
  |
6 | type Deque<T> = VecDeque<T>;
  |      ^^^^^

ソースコード

diff #
プレゼンテーションモードにする

use std::io::Write;
use std::collections::*;
type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;
fn run() {
input! {
n: usize,
q: usize,
s: bytes,
ask: [(u8, usize1, usize); q],
}
let mut set = (0..n).collect::<Set<_>>();
let mut seg = SegmentTreePURQ::new(n, Matrix::one(3), |a, b| a.matmul(b));
for (i, s) in s.iter().enumerate() {
let mut mat = Matrix::one(3);
if *s == b'0' {
mat[0].fill(M::one());
} else {
mat[1].fill(M::one());
}
seg.update_tmp(i, mat);
}
seg.update_all();
let out = std::io::stdout();
let mut out = std::io::BufWriter::new(out.lock());
for (op, l, r) in ask {
if op == 1 {
while let Some(&x) = set.range(l..r).next() {
set.remove(&x);
seg.update(x, Matrix::one(3));
}
} else {
let ans = seg.find(l, r)[1][2];
writeln!(out, "{}", ans).ok();
}
}
}
fn main() {
run();
}
type M = ModInt<998244353>;
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
use std::ops::*;
// ---------- begin trait ----------
pub trait Zero: Sized + Add<Self, Output = Self> {
fn zero() -> Self;
fn is_zero(&self) -> bool;
}
pub trait One: Sized + Mul<Self, Output = Self> {
fn one() -> Self;
fn is_one(&self) -> bool;
}
pub trait SemiRing: Zero + One {}
pub trait Ring: SemiRing + Sub<Output = Self> + Neg<Output = Self> {}
pub trait Field: Ring + Div<Output = Self> {}
impl<T> SemiRing for T where T: Zero + One {}
impl<T> Ring for T where T: SemiRing + Sub<Output = Self> + Neg<Output = Self> {}
impl<T> Field for T where T: Ring + Div<Output = Self> {}
// ---------- end trait ----------
// ---------- begin modint ----------
pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
let mut t = 1;
while n > 0 {
if n & 1 == 1 {
t = (t as u64 * r as u64 % m as u64) as u32;
}
r = (r as u64 * r as u64 % m as u64) as u32;
n >>= 1;
}
t
}
pub const fn primitive_root(p: u32) -> u32 {
let mut m = p - 1;
let mut f = [1; 30];
let mut k = 0;
let mut d = 2;
while d * d <= m {
if m % d == 0 {
f[k] = d;
k += 1;
}
while m % d == 0 {
m /= d;
}
d += 1;
}
if m > 1 {
f[k] = m;
k += 1;
}
let mut g = 1;
while g < p {
let mut ok = true;
let mut i = 0;
while i < k {
ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
i += 1;
}
if ok {
break;
}
g += 1;
}
g
}
pub const fn is_prime(n: u32) -> bool {
if n <= 1 {
return false;
}
let mut d = 2;
while d * d <= n {
if n % d == 0 {
return false;
}
d += 1;
}
true
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ModInt<const M: u32>(u32);
impl<const M: u32> ModInt<{ M }> {
const REM: u32 = {
let mut t = 1u32;
let mut s = !M + 1;
let mut n = !0u32 >> 2;
while n > 0 {
if n & 1 == 1 {
t = t.wrapping_mul(s);
}
s = s.wrapping_mul(s);
n >>= 1;
}
t
};
const INI: u64 = ((1u128 << 64) % M as u128) as u64;
const IS_PRIME: () = assert!(is_prime(M));
const PRIMITIVE_ROOT: u32 = primitive_root(M);
const ORDER: usize = 1 << (M - 1).trailing_zeros();
const fn reduce(x: u64) -> u32 {
let _ = Self::IS_PRIME;
let b = (x as u32 * Self::REM) as u64;
let t = x + b * M as u64;
let mut c = (t >> 32) as u32;
if c >= M {
c -= M;
}
c as u32
}
const fn multiply(a: u32, b: u32) -> u32 {
Self::reduce(a as u64 * b as u64)
}
pub const fn new(v: u32) -> Self {
assert!(v < M);
Self(Self::reduce(v as u64 * Self::INI))
}
pub const fn const_mul(&self, rhs: Self) -> Self {
Self(Self::multiply(self.0, rhs.0))
}
pub const fn pow(&self, mut n: u64) -> Self {
let mut t = Self::new(1);
let mut r = *self;
while n > 0 {
if n & 1 == 1 {
t = t.const_mul(r);
}
r = r.const_mul(r);
n >>= 1;
}
t
}
pub const fn inv(&self) -> Self {
assert!(self.0 != 0);
self.pow(M as u64 - 2)
}
pub const fn get(&self) -> u32 {
Self::reduce(self.0 as u64)
}
pub const fn zero() -> Self {
Self::new(0)
}
pub const fn one() -> Self {
Self::new(1)
}
}
impl<const M: u32> Add for ModInt<{ M }> {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut v = self.0 + rhs.0;
if v >= M {
v -= M;
}
Self(v)
}
}
impl<const M: u32> Sub for ModInt<{ M }> {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let mut v = self.0 - rhs.0;
if self.0 < rhs.0 {
v += M;
}
Self(v)
}
}
impl<const M: u32> Mul for ModInt<{ M }> {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
self.const_mul(rhs)
}
}
impl<const M: u32> Div for ModInt<{ M }> {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inv()
}
}
impl<const M: u32> AddAssign for ModInt<{ M }> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<const M: u32> SubAssign for ModInt<{ M }> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<const M: u32> MulAssign for ModInt<{ M }> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<const M: u32> DivAssign for ModInt<{ M }> {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
impl<const M: u32> Neg for ModInt<{ M }> {
type Output = Self;
fn neg(self) -> Self::Output {
if self.0 == 0 {
self
} else {
Self(M - self.0)
}
}
}
impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.get())
}
}
impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.get())
}
}
impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<const M: u32> From<usize> for ModInt<{ M }> {
fn from(val: usize) -> ModInt<{ M }> {
ModInt::new((val % M as usize) as u32)
}
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<const MOD: u32> {
fact: Vec<ModInt<MOD>>,
ifact: Vec<ModInt<MOD>>,
inv: Vec<ModInt<MOD>>,
}
impl<const MOD: u32> Precalc<MOD> {
pub fn new(size: usize) -> Self {
let mut fact = vec![ModInt::one(); size + 1];
let mut ifact = vec![ModInt::one(); size + 1];
let mut inv = vec![ModInt::one(); size + 1];
for i in 2..=size {
fact[i] = fact[i - 1] * ModInt::from(i);
}
ifact[size] = fact[size].inv();
for i in (2..=size).rev() {
inv[i] = ifact[i] * fact[i - 1];
ifact[i - 1] = ifact[i] * ModInt::from(i);
}
Self { fact, ifact, inv }
}
pub fn fact(&self, n: usize) -> ModInt<MOD> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModInt<MOD> {
self.ifact[n]
}
pub fn inv(&self, n: usize) -> ModInt<MOD> {
assert!(0 < n);
self.inv[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> {
if n < k {
return ModInt::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end precalc ----------
impl<const M: u32> Zero for ModInt<{ M }> {
fn zero() -> Self {
Self::zero()
}
fn is_zero(&self) -> bool {
self.0 == 0
}
}
impl<const M: u32> One for ModInt<{ M }> {
fn one() -> Self {
Self::one()
}
fn is_one(&self) -> bool {
self.get() == 1
}
}
// ---------- begin array op ----------
struct NTTPrecalc<const M: u32> {
sum_e: [ModInt<{ M }>; 30],
sum_ie: [ModInt<{ M }>; 30],
}
impl<const M: u32> NTTPrecalc<{ M }> {
const fn new() -> Self {
let cnt2 = (M - 1).trailing_zeros() as usize;
let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
let zeta = root.pow((M - 1) as u64 >> cnt2);
let mut es = [ModInt::zero(); 30];
let mut ies = [ModInt::zero(); 30];
let mut sum_e = [ModInt::zero(); 30];
let mut sum_ie = [ModInt::zero(); 30];
let mut e = zeta;
let mut ie = e.inv();
let mut i = cnt2;
while i >= 2 {
es[i - 2] = e;
ies[i - 2] = ie;
e = e.const_mul(e);
ie = ie.const_mul(ie);
i -= 1;
}
let mut now = ModInt::one();
let mut inow = ModInt::one();
let mut i = 0;
while i < cnt2 - 1 {
sum_e[i] = es[i].const_mul(now);
sum_ie[i] = ies[i].const_mul(inow);
now = ies[i].const_mul(now);
inow = es[i].const_mul(inow);
i += 1;
}
Self { sum_e, sum_ie }
}
}
struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}
pub trait ArrayAdd {
type Item;
fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayAdd for [T]
where
T: Zero + Copy,
{
type Item = T;
fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
let mut c = vec![T::zero(); self.len().max(rhs.len())];
c[..self.len()].copy_from_slice(self);
c.add_assign(rhs);
c
}
}
pub trait ArrayAddAssign {
type Item;
fn add_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArrayAddAssign for [T]
where
T: Add<Output = T> + Copy,
{
type Item = T;
fn add_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() >= rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
}
}
impl<T> ArrayAddAssign for Vec<T>
where
T: Zero + Add<Output = T> + Copy,
{
type Item = T;
fn add_assign(&mut self, rhs: &[Self::Item]) {
if self.len() < rhs.len() {
self.resize(rhs.len(), T::zero());
}
self.as_mut_slice().add_assign(rhs);
}
}
pub trait ArraySub {
type Item;
fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArraySub for [T]
where
T: Zero + Sub<Output = T> + Copy,
{
type Item = T;
fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
let mut c = vec![T::zero(); self.len().max(rhs.len())];
c[..self.len()].copy_from_slice(self);
c.sub_assign(rhs);
c
}
}
pub trait ArraySubAssign {
type Item;
fn sub_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArraySubAssign for [T]
where
T: Sub<Output = T> + Copy,
{
type Item = T;
fn sub_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() >= rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
}
}
impl<T> ArraySubAssign for Vec<T>
where
T: Zero + Sub<Output = T> + Copy,
{
type Item = T;
fn sub_assign(&mut self, rhs: &[Self::Item]) {
if self.len() < rhs.len() {
self.resize(rhs.len(), T::zero());
}
self.as_mut_slice().sub_assign(rhs);
}
}
pub trait ArrayDot {
type Item;
fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayDot for [T]
where
T: Mul<Output = T> + Copy,
{
type Item = T;
fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
assert!(self.len() == rhs.len());
self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
}
}
pub trait ArrayDotAssign {
type Item;
fn dot_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArrayDotAssign for [T]
where
T: MulAssign + Copy,
{
type Item = T;
fn dot_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() == rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
}
}
pub trait ArrayMul {
type Item;
fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayMul for [T]
where
T: Zero + One + Copy,
{
type Item = T;
fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
if self.is_empty() || rhs.is_empty() {
return vec![];
}
let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
for (i, a) in self.iter().enumerate() {
for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
*res = *res + *a * *b;
}
}
res
}
}
// transform len=1NTT
pub trait ArrayConvolution {
type Item;
fn transform(&mut self, len: usize);
fn inverse_transform(&mut self, len: usize);
fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
type Item = ModInt<{ M }>;
fn transform(&mut self, len: usize) {
let f = self;
let n = f.len();
let k = (n / len).trailing_zeros() as usize;
assert!(len << k == n);
assert!(k <= ModInt::<{ M }>::ORDER);
let pre = &NTTPrecalcHelper::<{ M }>::A;
for ph in 1..=k {
let p = len << (k - ph);
let mut now = ModInt::one();
for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
let (x, y) = f.split_at_mut(p);
for (x, y) in x.iter_mut().zip(y.iter_mut()) {
let l = *x;
let r = *y * now;
*x = l + r;
*y = l - r;
}
now *= pre.sum_e[(!i).trailing_zeros() as usize];
}
}
}
fn inverse_transform(&mut self, len: usize) {
let f = self;
let n = f.len();
let k = (n / len).trailing_zeros() as usize;
assert!(len << k == n);
assert!(k <= ModInt::<{ M }>::ORDER);
let pre = &NTTPrecalcHelper::<{ M }>::A;
for ph in (1..=k).rev() {
let p = len << (k - ph);
let mut inow = ModInt::one();
for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
let (x, y) = f.split_at_mut(p);
for (x, y) in x.iter_mut().zip(y.iter_mut()) {
let l = *x;
let r = *y;
*x = l + r;
*y = (l - r) * inow;
}
inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
}
}
let ik = ModInt::new(2).inv().pow(k as u64);
for f in f.iter_mut() {
*f *= ik;
}
}
fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
if self.len().min(rhs.len()) <= 32 {
return self.mul(rhs);
}
const PARAM: usize = 10;
let size = self.len() + rhs.len() - 1;
let mut k = 0;
while (size + (1 << k) - 1) >> k > PARAM {
k += 1;
}
let len = (size + (1 << k) - 1) >> k;
let mut f = vec![ModInt::zero(); len << k];
let mut g = vec![ModInt::zero(); len << k];
f[..self.len()].copy_from_slice(self);
g[..rhs.len()].copy_from_slice(rhs);
f.transform(len);
g.transform(len);
let mut buf = [ModInt::zero(); 2 * PARAM - 1];
let buf = &mut buf[..(2 * len - 1)];
let pre = &NTTPrecalcHelper::<{ M }>::A;
let mut now = ModInt::one();
for (i, (f, g)) in f
.chunks_exact_mut(2 * len)
.zip(g.chunks_exact(2 * len))
.enumerate()
{
let mut r = now;
for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
buf.fill(ModInt::zero());
for (i, f) in f.iter().enumerate() {
for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
*buf = *buf + *f * *g;
}
}
f.copy_from_slice(&buf[..len]);
for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
*f = *f + r * *buf;
}
r = -r;
}
now *= pre.sum_e[(!i).trailing_zeros() as usize];
}
f.inverse_transform(len);
f.truncate(self.len() + rhs.len() - 1);
f
}
}
// ---------- end array op ----------
// ---------- begin matrix ----------
#[derive(Clone)]
pub struct Matrix<T> {
h: usize,
w: usize,
a: Box<[T]>,
}
impl<T> Matrix<T> {
pub fn new(h: usize, w: usize, a: Vec<T>) -> Self {
assert!(a.len() == h * w);
Self {
h,
w,
a: a.into_boxed_slice(),
}
}
pub fn iter(&self) -> impl Iterator<Item = &[T]> {
self.a.chunks_exact(self.w)
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut [T]> {
self.a.chunks_exact_mut(self.w)
}
pub fn swap_row(&mut self, mut x: usize, mut y: usize) {
assert!(x < self.h && y < self.h);
if x == y {
return;
}
if x > y {
std::mem::swap(&mut x, &mut y);
}
let w = self.w;
let (l, r) = self.a.split_at_mut(y * w);
l[(x * w)..(x * w + w)].swap_with_slice(&mut r[..w]);
}
pub fn swap_col(&mut self, x: usize, y: usize) {
assert!(x < self.w && y < self.w);
for mat in self.iter_mut() {
mat.swap(x, y);
}
}
}
impl<T> Matrix<T>
where
T: Clone,
{
pub fn to_vec(&self) -> Vec<Vec<T>> {
self.iter().map(|a| Vec::from(a)).collect()
}
pub fn minor(&self, x: usize, y: usize) -> Self {
assert!(x < self.h && y < self.w);
let mut a = vec![];
for (i, b) in self.iter().enumerate() {
for (j, b) in b.iter().enumerate() {
if i != x && j != y {
a.push(b.clone());
}
}
}
Self::new(self.h - 1, self.w - 1, a)
}
}
impl<T> Matrix<T>
where
T: Add<Output = T> + Clone,
{
pub fn matadd(&self, rhs: &Self) -> Self {
assert_eq!((self.h, self.w), (rhs.h, rhs.w));
let mut res = self.clone();
for (res, a) in res.a.iter_mut().zip(rhs.a.iter()) {
*res = res.clone() + a.clone();
}
res
}
}
impl<T> Matrix<T>
where
T: Zero + Clone,
{
pub fn zero(h: usize, w: usize) -> Self {
Self::new(h, w, vec![T::zero(); h * w])
}
pub fn is_zero(&self) -> bool {
self.a.iter().all(|a| a.is_zero())
}
}
impl<T> Matrix<T>
where
T: Zero + One + Clone,
{
pub fn one(n: usize) -> Self {
let mut res = Self::new(n, n, vec![T::zero(); n * n]);
for (i, res) in res.iter_mut().enumerate() {
res[i] = T::one();
}
res
}
pub fn is_one(&self) -> bool {
assert!(self.h == self.w);
for (i, a) in self.iter().enumerate() {
for (j, a) in a.iter().enumerate() {
if (i == j && !a.is_one()) || (i != j && !a.is_zero()) {
return false;
}
}
}
true
}
}
impl<T> Matrix<T>
where
T: Sub<Output = T> + Clone,
{
pub fn matsub(&self, rhs: &Self) -> Self {
assert_eq!((self.h, self.w), (rhs.h, rhs.w));
let mut res = self.clone();
for (res, a) in res.a.iter_mut().zip(rhs.a.iter()) {
*res = res.clone() - a.clone();
}
res
}
}
impl<T> Matrix<T>
where
T: Zero + Mul<Output = T> + Clone,
{
pub fn matmul(&self, rhs: &Self) -> Self {
assert_eq!(self.w, rhs.h);
let mut res = Self::new(self.h, rhs.w, vec![T::zero(); self.h * rhs.w]);
for (res, a) in res.iter_mut().zip(self.iter()) {
for (a, b) in a.iter().zip(rhs.iter()) {
for (res, b) in res.iter_mut().zip(b.iter()) {
*res = res.clone() + a.clone() * b.clone();
}
}
}
res
}
}
impl<T> Matrix<T>
where
T: SemiRing + Clone,
{
pub fn matpow(&self, mut k: usize) -> Self {
assert_eq!(self.h, self.w);
let n = self.h;
let mut res = Self::one(n);
let mut r = self.clone();
while k > 0 {
if k & 1 == 1 {
res = res.matmul(&r);
}
r = r.matmul(&r);
k >>= 1;
}
res
}
}
impl<T> Matrix<T>
where
T: Field + Copy + std::fmt::Debug,
{
pub fn gaussian_elimination(&mut self) -> (usize, T) {
let mut x = 0;
let mut y = 0;
let mut tmp = Vec::with_capacity(self.w);
let mut det = T::one();
while x < self.h && y < self.w {
if let Some(pos) = (x..self.h).find(|a| !self[*a][y].is_zero()) {
if x != pos {
det = -det;
self.swap_row(x, pos);
}
det = det * self[x][y];
let inv = T::one() / self[x][y];
for mat in self[x][y..].iter_mut() {
*mat = *mat * inv;
}
tmp.clear();
tmp.extend_from_slice(&self[x]);
for (i, mat) in self.iter_mut().enumerate() {
if i == x {
continue;
}
let v = mat[y];
for (mat, tmp) in mat[y..].iter_mut().zip(tmp[y..].iter()) {
*mat = *mat - v * *tmp;
}
}
x += 1;
} else {
det = T::zero();
}
y += 1;
}
(x, det)
}
pub fn determinant(&self) -> T {
assert_eq!(self.h, self.w);
self.clone().gaussian_elimination().1
}
pub fn inverse(&self) -> Option<Self> {
assert_eq!(self.h, self.w);
let n = self.h;
let mut mat = Self::zero(n, 2 * n);
for (i, (mat, a)) in mat.iter_mut().zip(self.iter()).enumerate() {
mat[..n].copy_from_slice(a);
mat[n + i] = T::one();
}
let (_, det) = mat.gaussian_elimination();
if det.is_zero() {
return None;
}
let mut a = Vec::with_capacity(n * n);
for mat in mat.iter() {
a.extend_from_slice(&mat[n..]);
}
Some(Self::new(n, n, a))
}
}
impl<T> Index<usize> for Matrix<T> {
type Output = [T];
fn index(&self, x: usize) -> &Self::Output {
let w = self.w;
&self.a[(x * w)..((x + 1) * w)]
}
}
impl<T> IndexMut<usize> for Matrix<T> {
fn index_mut(&mut self, x: usize) -> &mut Self::Output {
let w = self.w;
&mut self.a[(x * w)..((x + 1) * w)]
}
}
// ---------- end matrix ----------
// ---------- begin segment tree Point Update Range Query ----------
pub struct SegmentTreePURQ<T, F> {
n: usize,
size: usize,
data: Vec<T>,
e: T,
op: F,
}
impl<T, F> SegmentTreePURQ<T, F>
where
T: Clone,
F: Fn(&T, &T) -> T,
{
pub fn new(n: usize, e: T, op: F) -> Self {
assert!(n > 0);
let size = n.next_power_of_two();
let data = vec![e.clone(); 2 * size];
SegmentTreePURQ {
n,
size,
data,
e,
op,
}
}
pub fn update_tmp(&mut self, x: usize, v: T) {
assert!(x < self.n);
self.data[x + self.size] = v;
}
pub fn update_all(&mut self) {
for i in (1..self.size).rev() {
self.data[i] = (self.op)(&self.data[2 * i], &self.data[2 * i + 1]);
}
}
pub fn update(&mut self, x: usize, v: T) {
assert!(x < self.n);
let mut x = x + self.size;
self.data[x] = v;
x >>= 1;
while x > 0 {
self.data[x] = (self.op)(&self.data[2 * x], &self.data[2 * x + 1]);
x >>= 1;
}
}
pub fn find(&self, l: usize, r: usize) -> T {
assert!(l <= r && r <= self.n);
if l == r {
return self.e.clone();
}
let mut l = self.size + l;
let mut r = self.size + r;
let mut x = self.e.clone();
let mut y = self.e.clone();
while l < r {
if l & 1 == 1 {
x = (self.op)(&x, &self.data[l]);
l += 1;
}
if r & 1 == 1 {
r -= 1;
y = (self.op)(&self.data[r], &y);
}
l >>= 1;
r >>= 1;
}
(self.op)(&x, &y)
}
pub fn max_right<P>(&self, l: usize, f: P) -> usize
where
P: Fn(&T) -> bool,
{
assert!(l <= self.n);
assert!(f(&self.e));
if l == self.n {
return self.n;
}
let mut l = l + self.size;
let mut sum = self.e.clone();
while {
l >>= l.trailing_zeros();
let v = (self.op)(&sum, &self.data[l]);
if !f(&v) {
while l < self.size {
l <<= 1;
let v = (self.op)(&sum, &self.data[l]);
if f(&v) {
sum = v;
l += 1;
}
}
return l - self.size;
}
sum = v;
l += 1;
l.count_ones() > 1
} {}
self.n
}
pub fn min_left<P>(&self, r: usize, f: P) -> usize
where
P: Fn(&T) -> bool,
{
assert!(r <= self.n);
assert!(f(&self.e));
if r == 0 {
return 0;
}
let mut r = r + self.size;
let mut sum = self.e.clone();
while {
r -= 1;
while r > 1 && r & 1 == 1 {
r >>= 1;
}
let v = (self.op)(&self.data[r], &sum);
if !f(&v) {
while r < self.size {
r = 2 * r + 1;
let v = (self.op)(&self.data[r], &sum);
if f(&v) {
sum = v;
r -= 1;
}
}
return r + 1 - self.size;
}
sum = v;
(r & (!r + 1)) != r
} {}
0
}
}
// ---------- end segment tree Point Update Range Query ----------
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0