結果

問題 No.2763 Macaron Gift Box
ユーザー TKTYITKTYI
提出日時 2024-05-17 22:19:52
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,307 ms / 3,000 ms
コード長 5,814 bytes
コンパイル時間 4,628 ms
コンパイル使用メモリ 283,692 KB
実行使用メモリ 17,732 KB
最終ジャッジ日時 2024-05-17 22:20:06
合計ジャッジ時間 12,211 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 1 ms
6,940 KB
testcase_05 AC 1 ms
6,940 KB
testcase_06 AC 2 ms
6,948 KB
testcase_07 AC 556 ms
9,636 KB
testcase_08 AC 112 ms
6,944 KB
testcase_09 AC 247 ms
6,940 KB
testcase_10 AC 1,242 ms
16,616 KB
testcase_11 AC 1,232 ms
16,772 KB
testcase_12 AC 1,307 ms
17,732 KB
testcase_13 AC 1,257 ms
17,728 KB
testcase_14 AC 110 ms
6,940 KB
testcase_15 AC 108 ms
6,940 KB
testcase_16 AC 111 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
using namespace atcoder;
typedef long long int ll;
typedef long double ld;
typedef vector<ll> vi;
typedef vector<vi> vvi;
typedef vector<vvi> vvvi;
typedef vector<vvvi> vvvvi;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<vvb> vvvb;
typedef vector<vvvb> vvvvb;
typedef pair<ll,ll> pi;
typedef pair<ll,pi> ppi;
typedef pair<ll,ppi> pppi;
typedef pair<ll,pppi> ppppi;
#define FOR(i,l,r) for(ll i=l;i<r;i++)
#define REP(i,n) FOR(i,0,n)
#define RFOR(i,l,r) for(ll i=r-1;i>=l;i--)
#define RREP(i,n) RFOR(i,0,n)
#define ALL(x) x.begin(),x.end()
#define F first
#define S second
#define BS(A,x) binary_search(ALL(A),x)
#define LB(A,x) (ll)(lower_bound(ALL(A),x)-A.begin())
#define UB(A,x) (ll)(upper_bound(ALL(A),x)-A.begin())
#define COU(A,x) (UB(A,x)-LB(A,x))
#define sz(c) ((ll)(c).size())
/*
#include<boost/multiprecision/cpp_int.hpp>
namespace mp=boost::multiprecision;
using Bint=mp::cpp_int;
*/
template<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;
template<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>p){os<<p.F<<" "<<p.S;return os;}
template<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.F>>p.S;return is;}
template<typename T>ostream&operator<<(ostream&os,vector<T>v){REP(i,sz(v))os<<v[i]<<(i+1!=sz(v)?" ":"");return os;}
template<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}
template<class T>bool chmax(T&a,T b){if(a<b){a=b;return 1;}return 0;}
template<class T>bool chmin(T&a,T b){if(b<a){a=b;return 1;}return 0;}
ld dist(ld x1,ld y1,ld x2,ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}
vi fast_mod_convolution(vi&a,vi&b,ll mod){
  const ll m1=167772161,m2=469762049,m3=1224736769;
  const ll m1_inv_m2=inv_mod(m1,m2);
  const ll m12_inv_m3=inv_mod(m1*m2,m3);
  const ll m12_mod=m1*m2%mod;
  auto x=convolution<m1>(a,b);
  auto y=convolution<m2>(a,b);
  auto z=convolution<m3>(a,b);
  vector<ll>ret(sz(a)+sz(b)-1);
  REP(i,sz(ret)){
    ll v1=(y[i]-x[i])*m1_inv_m2%m2;if(v1<0)v1+=m2;
    ll v2=(z[i]-(x[i]+m1*v1)%m3)*m12_inv_m3%m3;if(v2<0)v2+=m3;
  	ret[i]=(x[i]+m1*v1+m12_mod*v2)%mod;
  }
  return ret;
}
const ld EPS=1e-8;
//*
using mint=modint998244353;
const ll mod=998244353;
//*/
/*
using mint=modint1000000007;
const ll mod=1000000007;
//*/
//using mint=modint;
//*
typedef vector<mint> vm;
typedef vector<vm> vvm;
typedef vector<vvm> vvvm;
typedef vector<vvvm> vvvvm;
ostream&operator<<(ostream&os,mint a){os<<a.val();return os;}
istream&operator>>(istream&is,mint&a){int x;is>>x;a=mint(x);return is;}
//*/
//depend on ACL
template<typename T>
struct formal_power_series{
    private:
    size_t N;
    vector<T>F;
    public:
    formal_power_series(size_t _N):N(_N){F.assign(N,0);}
    T&operator[](int i){return F[i];}
    void operator+=(formal_power_series G){
        for(int i=0;i<N&&i<G.F.size();i++)F[i]+=G.F[i];
    }
    void operator-=(formal_power_series G){
        for(int i=0;i<N&&i<G.F.size();i++)F[i]-=G.F[i];
    }
    void operator*=(formal_power_series G){
        F=convolution(F,G.F);
        F.resize(N);
    }
    void operator*=(T k){
        for(int i=0;i<N;i++)F[i]*=k;
    }
    void operator/=(formal_power_series G){
        F=convolution(F,G.inv().F);
        F.resize(N);
    }
    formal_power_series operator+(formal_power_series G){
        formal_power_series res(N);
        for(int i=0;i<N;i++)res.F[i]=F[i];
        res+=G;
        return res;
    }
    formal_power_series operator-(formal_power_series G){
        formal_power_series res(N);
        for(int i=0;i<N;i++)res.F[i]=F[i];
        res-=G;
        return res;
    }
    formal_power_series operator*(formal_power_series G){
        formal_power_series res(N);
        for(int i=0;i<N;i++)res.F[i]=F[i];
        res*=G;
        return res;
    }
    formal_power_series operator*(T k){
        formal_power_series res(N);
        for(int i=0;i<N;i++)res.F[i]=F[i];
        res*=k;
        return res;
    }
    formal_power_series operator/(formal_power_series G){
        formal_power_series res(N);
        for(int i=0;i<N;i++)res.F[i]=F[i];
        res*=G.inv();
        return res;
    }
    formal_power_series pow(long long n){
        formal_power_series res(N);
        formal_power_series A(N);
        for(int i=0;i<N;i++)A.F[i]=F[i];
        res[0]=1;
        while(n){
            if(n&1LL)res*=A;
            A*=A;n>>=1;
        }
        return res;
    }
    formal_power_series inv(){
        formal_power_series res(N);
        formal_power_series A(N);
        for(int i=0;i<N;i++)A.F[i]=-F[i];
        res[0]=1;
        A.F[0]++;
        int n=N;
        while(n){
            res+=res*A;
            A*=A;
            n>>=1;
        }
        return res;
    }
    formal_power_series dif(){
        formal_power_series res(N);
        for(int i=1;i<N;i++)res[i-1]=F[i]*i;
        return res;
    }
    formal_power_series inte(){
        formal_power_series res(N);
        for(int i=1;i<N;i++)res[i]=F[i-1]/i;
        return res;
    }
    formal_power_series log(){
        return (dif()*inv()).inte();
    }
    formal_power_series exp(){
        formal_power_series res(N);
        res[0]=1;
        int n=N;
        while(n){
            formal_power_series A=this-log(res);
            A[0]++;
            res*=A;
            n>>=1;
        }
        return res;
    }
};
using FPS=formal_power_series<mint>;
int main(){
  ll N,K;cin>>N>>K;
  FPS f(N+10);
  f[0]=1;
  {
  	ll i=1;
  	while(i*(3*i-1)/2<N+10){
  		f[i*(3*i-1)/2]+=i%2?-1:1;
  		if(i*(3*i+1)/2<N+10)f[i*(3*i+1)/2]+=i%2?-1:1;
  		i++;
  	}
  }
  K++;
  FPS g(N+10);
  REP(i,N+10)if(i%K==0)g[i]=f[i/K];
  auto h=g/f;
  vi ans(N);
  FOR(i,1,N+1)ans[i-1]=h[i].val();
  cout<<ans<<endl;
  return 0;
}
0