結果

問題 No.1796 木上のクーロン
ユーザー ebi_flyebi_fly
提出日時 2024-05-22 12:13:33
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 776 ms / 10,000 ms
コード長 32,917 bytes
コンパイル時間 3,984 ms
コンパイル使用メモリ 283,424 KB
実行使用メモリ 49,840 KB
最終ジャッジ日時 2024-12-20 18:25:34
合計ジャッジ時間 13,735 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 11 ms
7,168 KB
testcase_01 AC 10 ms
7,296 KB
testcase_02 AC 10 ms
7,424 KB
testcase_03 AC 9 ms
7,296 KB
testcase_04 AC 10 ms
7,296 KB
testcase_05 AC 10 ms
7,296 KB
testcase_06 AC 10 ms
7,296 KB
testcase_07 AC 10 ms
7,296 KB
testcase_08 AC 12 ms
7,424 KB
testcase_09 AC 10 ms
7,424 KB
testcase_10 AC 10 ms
7,424 KB
testcase_11 AC 11 ms
7,424 KB
testcase_12 AC 11 ms
7,424 KB
testcase_13 AC 11 ms
7,424 KB
testcase_14 AC 12 ms
7,424 KB
testcase_15 AC 11 ms
7,424 KB
testcase_16 AC 11 ms
7,424 KB
testcase_17 AC 11 ms
7,424 KB
testcase_18 AC 12 ms
7,424 KB
testcase_19 AC 11 ms
7,424 KB
testcase_20 AC 99 ms
16,736 KB
testcase_21 AC 100 ms
16,480 KB
testcase_22 AC 196 ms
26,676 KB
testcase_23 AC 188 ms
26,916 KB
testcase_24 AC 288 ms
37,768 KB
testcase_25 AC 294 ms
37,188 KB
testcase_26 AC 397 ms
46,728 KB
testcase_27 AC 394 ms
47,176 KB
testcase_28 AC 756 ms
43,840 KB
testcase_29 AC 776 ms
43,848 KB
testcase_30 AC 339 ms
49,060 KB
testcase_31 AC 350 ms
49,840 KB
testcase_32 AC 337 ms
46,688 KB
testcase_33 AC 553 ms
47,712 KB
testcase_34 AC 507 ms
47,476 KB
testcase_35 AC 533 ms
44,164 KB
testcase_36 AC 549 ms
44,696 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "test/yuki/yuki_1796.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1796"

#line 2 "fps/middle_product.hpp"

#include <algorithm>
#include <bit>
#include <cassert>
#include <ranges>
#include <vector>

#line 2 "convolution/ntt.hpp"

#line 4 "convolution/ntt.hpp"
#include <array>
#line 8 "convolution/ntt.hpp"

#line 2 "math/internal_math.hpp"

#line 4 "math/internal_math.hpp"

namespace ebi {

namespace internal {

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    if (m == 880803841) return 26;
    if (m == 924844033) return 5;
    return -1;
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace ebi
#line 2 "template/int_alias.hpp"

#include <cstdint>

namespace ebi {

using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;

}  // namespace ebi
#line 2 "modint/base.hpp"

#include <concepts>
#include <iostream>
#include <utility>

namespace ebi {

template <class T>
concept Modint = requires(T a, T b) {
    a + b;
    a - b;
    a * b;
    a / b;
    a.inv();
    a.val();
    a.pow(std::declval<long long>());
    T::mod();
};

template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
    long long x;
    os >> x;
    a = x;
    return os;
}

template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
    return os << a.val();
}

}  // namespace ebi
#line 12 "convolution/ntt.hpp"

namespace ebi {

namespace internal {

template <Modint mint, int g = internal::primitive_root<mint::mod()>>
struct ntt_info {
    static constexpr int rank2 =
        std::countr_zero((unsigned int)(mint::mod() - 1));

    std::array<mint, rank2 + 1> root, inv_root;

    ntt_info() {
        root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
        inv_root[rank2] = root[rank2].inv();
        for (int i = rank2 - 1; i >= 0; i--) {
            root[i] = root[i + 1] * root[i + 1];
            inv_root[i] = inv_root[i + 1] * inv_root[i + 1];
        }
    }
};

template <Modint mint> void fft2(std::vector<mint>& a) {
    static const ntt_info<mint> info;
    int n = int(a.size());
    int bit_size = std::countr_zero(a.size());
    assert(n == 1 << bit_size);
    for (int bit = bit_size - 1; bit >= 0; bit--) {
        int m = 1 << bit;
        for (int i = 0; i < n; i += 2 * m) {
            mint w = 1;
            for (int j = 0; j < m; j++) {
                mint p1 = a[i + j];
                mint p2 = a[i + j + m];
                a[i + j] = p1 + p2;
                a[i + j + m] = (p1 - p2) * w;
                w *= info.root[bit + 1];
            }
        }
    }
}

template <Modint mint> void ifft2(std::vector<mint>& a) {
    static const ntt_info<mint> info;
    int n = int(a.size());
    int bit_size = std::countr_zero(a.size());
    assert(n == 1 << bit_size);

    for (int bit = 0; bit < bit_size; bit++) {
        for (int i = 0; i < n / (1 << (bit + 1)); i++) {
            mint w = 1;
            for (int j = 0; j < (1 << bit); j++) {
                int idx = i * (1 << (bit + 1)) + j;
                int jdx = idx + (1 << bit);
                mint p1 = a[idx];
                mint p2 = w * a[jdx];
                a[idx] = p1 + p2;
                a[jdx] = p1 - p2;
                w *= info.inv_root[bit + 1];
            }
        }
    }
}

template <Modint mint> void fft4(std::vector<mint>& a) {
    static const ntt_info<mint> info;
    const u32 mod = mint::mod();
    const u64 iw = info.root[2].val();
    int n = int(a.size());
    int bit_size = std::countr_zero(a.size());
    assert(n == 1 << bit_size);
    int len = bit_size;
    while (len > 0) {
        if (len == 1) {
            for (int i = 0; i < n; i += 2) {
                mint p0 = a[i];
                mint p1 = a[i + 1];
                a[i] = p0 + p1;
                a[i + 1] = p0 - p1;
            }
            len--;
        } else {
            int m = 1 << (len - 2);
            u64 w1 = 1, w2 = 1, w3 = 1, iw1 = iw, iw3 = iw;
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j += 4 * m) {
                    int i0 = i + j, i1 = i0 + m, i2 = i1 + m, i3 = i2 + m;
                    u32 a0 = a[i0].val();
                    u32 a1 = a[i1].val();
                    u32 a2 = a[i2].val();
                    u32 a3 = a[i3].val();
                    u32 a0_plus_a2 = a0 + a2;
                    u32 a1_plus_a3 = a1 + a3;
                    u32 a0_minus_a2 = a0 + mod - a2;
                    u32 a1_minus_a3 = a1 + mod - a3;
                    a[i0] = a0_plus_a2 + a1_plus_a3;
                    a[i1] = a0_minus_a2 * w1 + a1_minus_a3 * iw1;
                    a[i2] = (a0_plus_a2 + 2 * mod - a1_plus_a3) * w2;
                    a[i3] = a0_minus_a2 * w3 + (2 * mod - a1_minus_a3) * iw3;
                }
                w1 = w1 * info.root[len].val() % mod;
                w2 = w1 * w1 % mod;
                w3 = w2 * w1 % mod;
                iw1 = iw * w1 % mod;
                iw3 = iw * w3 % mod;
            }
            len -= 2;
        }
    }
}

template <Modint mint> void ifft4(std::vector<mint>& a) {
    static const ntt_info<mint> info;
    const u32 mod = mint::mod();
    const u64 mod2 = u64(mod) * mod;
    const u64 iw = info.inv_root[2].val();
    int n = int(a.size());
    int bit_size = std::countr_zero(a.size());
    assert(n == 1 << bit_size);
    int len = (bit_size & 1 ? 1 : 2);
    while (len <= bit_size) {
        if (len == 1) {
            for (int i = 0; i < n; i += 2) {
                mint a0 = a[i];
                mint a1 = a[i + 1];
                a[i] = a0 + a1;
                a[i + 1] = a0 - a1;
            }
        } else {
            int m = 1 << (len - 2);
            u64 w1 = 1, w2 = 1, w3 = 1, iw1 = iw, iw3 = iw;
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j += 4 * m) {
                    int i0 = i + j, i1 = i0 + m, i2 = i1 + m, i3 = i2 + m;
                    u64 a0 = a[i0].val();
                    u64 a1 = w1 * a[i1].val();
                    u64 a2 = w2 * a[i2].val();
                    u64 a3 = w3 * a[i3].val();
                    u64 b1 = iw1 * a[i1].val();
                    u64 b3 = iw3 * a[i3].val();
                    u64 a0_plus_a2 = a0 + a2;
                    u64 a1_plus_a3 = a1 + a3;
                    u64 a0_minus_a2 = a0 + mod2 - a2;
                    u64 b1_minus_b3 = b1 + mod2 - b3;
                    a[i0] = a0_plus_a2 + a1_plus_a3;
                    a[i1] = a0_minus_a2 + b1_minus_b3;
                    a[i2] = a0_plus_a2 + mod2 * 2 - a1_plus_a3;
                    a[i3] = a0_minus_a2 + mod2 * 2 - b1_minus_b3;
                }
                w1 = w1 * info.inv_root[len].val() % mod;
                w2 = w1 * w1 % mod;
                w3 = w2 * w1 % mod;
                iw1 = iw * w1 % mod;
                iw3 = iw * w3 % mod;
            }
        }
        len += 2;
    }
}

}  // namespace internal

}  // namespace ebi
#line 11 "fps/middle_product.hpp"

namespace ebi {

template <Modint mint>
std::vector<mint> middle_product(const std::vector<mint> &a,
                                 const std::vector<mint> &b) {
    assert(a.size() >= b.size());
    if (std::min(a.size() - b.size() + 1, b.size()) <= 60) {
        return middle_product_naive<mint>(a, b);
    }
    int n = std::bit_ceil(a.size());
    std::vector<mint> fa(n), fb(n);
    std::copy(a.begin(), a.end(), fa.begin());
    std::copy(b.rbegin(), b.rend(), fb.begin());
    internal::fft4(fa);
    internal::fft4(fb);
    for (int i = 0; i < n; i++) {
        fa[i] *= fb[i];
    }
    internal::ifft4(fa);
    mint inv_n = mint(n).inv();
    for (auto &x : fa) {
        x *= inv_n;
    }
    fa.resize(a.size());
    fa.erase(fa.begin(), fa.begin() + b.size() - 1);
    return fa;
}

template <Modint mint>
std::vector<mint> middle_product_naive(const std::vector<mint> &a,
                                       const std::vector<mint> &b) {
    int n = (int)a.size();
    int m = (int)b.size();
    assert(n >= m);
    std::vector<mint> c(n - m + 1, 0);
    for (int i : std::views::iota(0, n - m + 1)) {
        for (int j : std::views::iota(0, m)) {
            c[i] += b[j] * a[i + j];
        }
    }
    return c;
}

}  // namespace ebi
#line 2 "graph/base.hpp"

#line 7 "graph/base.hpp"

#line 2 "data_structure/simple_csr.hpp"

#line 6 "data_structure/simple_csr.hpp"

namespace ebi {

template <class E> struct simple_csr {
    simple_csr() = default;

    simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
        : start(n + 1, 0), elist(elements.size()) {
        for (auto e : elements) {
            start[e.first + 1]++;
        }
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] += start[i];
        }
        auto counter = start;
        for (auto [i, e] : elements) {
            elist[counter[i]++] = e;
        }
    }

    simple_csr(const std::vector<std::vector<E>>& es)
        : start(es.size() + 1, 0) {
        int n = es.size();
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] = (int)es[i].size() + start[i];
        }
        elist.resize(start.back());
        for (auto i : std::views::iota(0, n)) {
            std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
        }
    }

    int size() const {
        return (int)start.size() - 1;
    }

    const auto operator[](int i) const {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }
    auto operator[](int i) {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }

    const auto operator()(int i, int l, int r) const {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }
    auto operator()(int i, int l, int r) {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }

  private:
    std::vector<int> start;
    std::vector<E> elist;
};

}  // namespace ebi
#line 9 "graph/base.hpp"

namespace ebi {

template <class T> struct Edge {
    int from, to;
    T cost;
    int id;
};

template <class E> struct Graph {
    using cost_type = E;
    using edge_type = Edge<cost_type>;

    Graph(int n_) : n(n_) {}

    Graph() = default;

    void add_edge(int u, int v, cost_type c) {
        buff.emplace_back(u, edge_type{u, v, c, m});
        edges.emplace_back(edge_type{u, v, c, m++});
    }

    void add_undirected_edge(int u, int v, cost_type c) {
        buff.emplace_back(u, edge_type{u, v, c, m});
        buff.emplace_back(v, edge_type{v, u, c, m});
        edges.emplace_back(edge_type{u, v, c, m});
        m++;
    }

    void read_tree(int offset = 1, bool is_weighted = false) {
        read_graph(n - 1, offset, false, is_weighted);
    }

    void read_parents(int offset = 1) {
        for (auto i : std::views::iota(1, n)) {
            int p;
            std::cin >> p;
            p -= offset;
            add_undirected_edge(p, i, 1);
        }
        build();
    }

    void read_graph(int e, int offset = 1, bool is_directed = false,
                    bool is_weighted = false) {
        for (int i = 0; i < e; i++) {
            int u, v;
            std::cin >> u >> v;
            u -= offset;
            v -= offset;
            if (is_weighted) {
                cost_type c;
                std::cin >> c;
                if (is_directed) {
                    add_edge(u, v, c);
                } else {
                    add_undirected_edge(u, v, c);
                }
            } else {
                if (is_directed) {
                    add_edge(u, v, 1);
                } else {
                    add_undirected_edge(u, v, 1);
                }
            }
        }
        build();
    }

    void build() {
        assert(!prepared);
        csr = simple_csr<edge_type>(n, buff);
        buff.clear();
        prepared = true;
    }

    int size() const {
        return n;
    }

    int node_number() const {
        return n;
    }

    int edge_number() const {
        return m;
    }

    edge_type get_edge(int i) const {
        return edges[i];
    }

    std::vector<edge_type> get_edges() const {
        return edges;
    }

    const auto operator[](int i) const {
        return csr[i];
    }
    auto operator[](int i) {
        return csr[i];
    }

  private:
    int n, m = 0;

    std::vector<std::pair<int,edge_type>> buff;

    std::vector<edge_type> edges;
    simple_csr<edge_type> csr;
    bool prepared = false;
};

}  // namespace ebi
#line 2 "math/binomial.hpp"

#line 9 "math/binomial.hpp"

#line 11 "math/binomial.hpp"

namespace ebi {

template <Modint mint> struct Binomial {
  private:
    static void extend(int len = -1) {
        int sz = (int)fact.size();
        if (len < 0)
            len = 2 * sz;
        else if (len <= sz)
            return;
        else
            len = std::max(2 * sz, (int)std::bit_ceil(std::uint32_t(len)));
        len = std::min(len, mint::mod());
        assert(sz <= len);
        fact.resize(len);
        inv_fact.resize(len);
        for (int i : std::views::iota(sz, len)) {
            fact[i] = fact[i - 1] * i;
        }
        inv_fact[len - 1] = fact[len - 1].inv();
        for (int i : std::views::iota(sz, len) | std::views::reverse) {
            inv_fact[i - 1] = inv_fact[i] * i;
        }
    }

  public:
    Binomial() = default;

    Binomial(int n) {
        extend(n + 1);
    }

    static mint f(int n) {
        if (n >= (int)fact.size()) [[unlikely]] {
            extend(n + 1);
        }
        return fact[n];
    }

    static mint inv_f(int n) {
        if (n >= (int)fact.size()) [[unlikely]] {
            extend(n + 1);
        }
        return inv_fact[n];
    }

    static mint c(int n, int r) {
        if (r < 0 || n < r) return 0;
        return f(n) * inv_f(r) * inv_f(n - r);
    }

    static mint neg_c(int k, int d) {
        assert(d > 0);
        return c(k + d - 1, d - 1);
    }

    static mint p(int n, int r) {
        if (r < 0 || n < r) return 0;
        return f(n) * inv_f(n - r);
    }

    static mint inv(int n) {
        return inv_f(n) * f(n - 1);
    }

    static void reserve(int n) {
        extend(n + 1);
    }

  private:
    static std::vector<mint> fact, inv_fact;
};

template <Modint mint>
std::vector<mint> Binomial<mint>::fact = std::vector<mint>(2, 1);

template <Modint mint>
std::vector<mint> Binomial<mint>::inv_fact = std::vector<mint>(2, 1);

}  // namespace ebi
#line 2 "modint/modint.hpp"

#line 5 "modint/modint.hpp"

#line 7 "modint/modint.hpp"

namespace ebi {

template <int m> struct static_modint {
  private:
    using modint = static_modint;

  public:
    static constexpr int mod() {
        return m;
    }

    static constexpr modint raw(int v) {
        modint x;
        x._v = v;
        return x;
    }

    constexpr static_modint() : _v(0) {}

    template<std::signed_integral T>
    constexpr static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }

    template<std::unsigned_integral T>
    constexpr static_modint(T v) {
        _v = v % umod();
    }

    constexpr unsigned int val() const {
        return _v;
    }

    constexpr unsigned int value() const {
        return val();
    }

    constexpr modint &operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    constexpr modint &operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }

    constexpr modint operator++(int) {
        modint res = *this;
        ++*this;
        return res;
    }
    constexpr modint operator--(int) {
        modint res = *this;
        --*this;
        return res;
    }

    constexpr modint &operator+=(const modint &rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    constexpr modint &operator-=(const modint &rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    constexpr modint &operator*=(const modint &rhs) {
        unsigned long long x = _v;
        x *= rhs._v;
        _v = (unsigned int)(x % (unsigned long long)umod());
        return *this;
    }
    constexpr modint &operator/=(const modint &rhs) {
        return *this = *this * rhs.inv();
    }

    constexpr modint operator+() const {
        return *this;
    }
    constexpr modint operator-() const {
        return modint() - *this;
    }

    constexpr modint pow(long long n) const {
        assert(0 <= n);
        modint x = *this, res = 1;
        while (n) {
            if (n & 1) res *= x;
            x *= x;
            n >>= 1;
        }
        return res;
    }
    constexpr modint inv() const {
        assert(_v);
        return pow(umod() - 2);
    }

    friend modint operator+(const modint &lhs, const modint &rhs) {
        return modint(lhs) += rhs;
    }
    friend modint operator-(const modint &lhs, const modint &rhs) {
        return modint(lhs) -= rhs;
    }
    friend modint operator*(const modint &lhs, const modint &rhs) {
        return modint(lhs) *= rhs;
    }

    friend modint operator/(const modint &lhs, const modint &rhs) {
        return modint(lhs) /= rhs;
    }
    friend bool operator==(const modint &lhs, const modint &rhs) {
        return lhs.val() == rhs.val();
    }
    friend bool operator!=(const modint &lhs, const modint &rhs) {
        return !(lhs == rhs);
    }

  private:
    unsigned int _v = 0;

    static constexpr unsigned int umod() {
        return m;
    }
};

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;

}  // namespace ebi
#line 1 "template/template.hpp"
#include <bits/stdc++.h>

#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()

#line 2 "template/debug_template.hpp"

#line 4 "template/debug_template.hpp"

namespace ebi {

#ifdef LOCAL
#define debug(...)                                                      \
    std::cerr << "LINE: " << __LINE__ << "  [" << #__VA_ARGS__ << "]:", \
        debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif

void debug_out() {
    std::cerr << std::endl;
}

template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
    std::cerr << " " << h;
    if (sizeof...(t) > 0) std::cerr << " :";
    debug_out(t...);
}

}  // namespace ebi
#line 2 "template/io.hpp"

#line 5 "template/io.hpp"
#include <optional>
#line 7 "template/io.hpp"

namespace ebi {

template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
    return os << pa.first << " " << pa.second;
}

template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
    return os >> pa.first >> pa.second;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
    for (std::size_t i = 0; i < vec.size(); i++)
        os << vec[i] << (i + 1 == vec.size() ? "" : " ");
    return os;
}

template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
    for (T &e : vec) std::cin >> e;
    return os;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
    if (opt) {
        os << opt.value();
    } else {
        os << "invalid value";
    }
    return os;
}

void fast_io() {
    std::cout << std::fixed << std::setprecision(15);
    std::cin.tie(nullptr);
    std::ios::sync_with_stdio(false);
}

}  // namespace ebi
#line 2 "template/utility.hpp"

#line 5 "template/utility.hpp"

#line 8 "template/utility.hpp"

namespace ebi {

template <class T> inline bool chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}

template <class T> inline bool chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

template <class T> T safe_ceil(T a, T b) {
    if (a % b == 0)
        return a / b;
    else if (a >= 0)
        return (a / b) + 1;
    else
        return -((-a) / b);
}

template <class T> T safe_floor(T a, T b) {
    if (a % b == 0)
        return a / b;
    else if (a >= 0)
        return a / b;
    else
        return -((-a) / b) - 1;
}

constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;

constexpr int INF = std::numeric_limits<int>::max() / 2;

const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};

}  // namespace ebi
#line 2 "tree/centroid_decomposition.hpp"

#line 7 "tree/centroid_decomposition.hpp"

namespace ebi {

namespace internal {

template <class F>
void centroid_decomposition_dfs_naive(const std::vector<int> &par,
                                      const std::vector<int> &original_vs,
                                      F f) {
    const int n = (int)par.size();
    assert(par.size() == original_vs.size());
    int center = -1;
    std::vector<int> sz(n, 1);
    for (const int v : std::views::iota(0, n) | std::views::reverse) {
        if (sz[v] >= (n + 1) / 2) {
            center = v;
            break;
        }
        sz[par[v]] += sz[v];
    }
    std::vector<int> color(n, -1);
    std::vector<int> vs = {center};
    color[center] = 0;
    int c = 1;
    for (const int v : std::views::iota(1, n)) {
        if (par[v] == center) {
            vs.emplace_back(v);
            color[v] = c++;
        }
    }
    if (center > 0) {
        for (int v = par[center]; v != -1; v = par[v]) {
            vs.emplace_back(v);
            color[v] = c;
        }
        c++;
    }
    for (const int v : std::views::iota(0, n)) {
        if (color[v] == -1) {
            vs.emplace_back(v);
            color[v] = color[par[v]];
        }
    }
    std::vector<int> index_ptr(c + 1, 0);
    for (const int v : std::views::iota(0, n)) {
        index_ptr[color[v] + 1]++;
    }
    for (const int i : std::views::iota(0, c)) {
        index_ptr[i + 1] += index_ptr[i];
    }
    auto counter = index_ptr;
    std::vector<int> ord(n);
    for (auto v : vs) {
        ord[counter[color[v]]++] = v;
    }
    std::vector<int> relabel(n);
    for (const int v : std::views::iota(0, n)) {
        relabel[ord[v]] = v;
    }
    std::vector<int> original_vs2(n);
    for (const int v : std::views::iota(0, n)) {
        original_vs2[relabel[v]] = original_vs[v];
    }
    std::vector<int> relabel_par(n, -1);
    for (int v : std::views::iota(1, n)) {
        int a = relabel[v];
        int b = relabel[par[v]];
        if (a > b) std::swap(a, b);
        relabel_par[b] = a;
    }
    f(relabel_par, original_vs2, index_ptr);
    for (const int i : std::views::iota(1, c)) {
        int l = index_ptr[i], r = index_ptr[i + 1];
        std::vector<int> par1(r - l, -1);
        std::vector<int> original_vs1(r - l, -1);
        for (int v : std::views::iota(l, r)) {
            par1[v - l] = (relabel_par[v] == 0 ? -1 : relabel_par[v] - l);
            original_vs1[v - l] = original_vs2[v];
        }
        centroid_decomposition_dfs_naive(par1, original_vs1, f);
    }
    return;
}

template <class F>
void one_third_centroid_decomposition(const std::vector<int> &par,
                                      const std::vector<int> &original_vs,
                                      F f) {
    const int n = (int)par.size();
    assert(n > 1);
    if (n == 2) return;
    int center = -1;
    std::vector<int> sz(n, 1);

    for (const int v : std::views::iota(0, n) | std::views::reverse) {
        if (sz[v] >= (n + 1) / 2) {
            center = v;
            break;
        }
        sz[par[v]] += sz[v];
    }

    std::vector<int> color(n, -1);
    std::vector<int> ord(n, -1);
    ord[center] = 0;
    int t = 1;
    int red = n - sz[center];
    for (int v = par[center]; v != -1; v = par[v]) {
        ord[v] = t++;
        color[v] = 0;
    }
    for (const int v : std::views::iota(1, n)) {
        if (par[v] == center && 3 * (red + sz[v]) <= 2 * (n - 1)) {
            red += sz[v];
            ord[v] = t++;
            color[v] = 0;
        }
    }
    for (const int v : std::views::iota(1, n)) {
        if (v != center && color[v] == -1 && color[par[v]] == 0) {
            ord[v] = t++;
            color[v] = 0;
        }
    }
    const int n0 = t - 1;
    for (const int v : std::views::iota(1, n)) {
        if (v != center && color[v] == -1) {
            ord[v] = t++;
            color[v] = 1;
        }
    }
    assert(t == n);
    const int n1 = n - 1 - n0;
    std::vector<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(n, -1);
    std::vector<int> original_vs0(n0 + 1), original_vs1(n1 + 1),
        original_vs2(n);
    for (const int i : std::views::iota(0, n)) {
        int v = ord[i];
        original_vs2[v] = original_vs[i];
        if (color[i] != 1) {
            original_vs0[v] = original_vs[i];
        }
        if (color[i] != 0) {
            int idx = std::max(v - n0, 0);
            original_vs1[idx] = original_vs[i];
        }
    }
    for (const int v : std::views::iota(1, n)) {
        int a = ord[v], b = ord[par[v]];
        if (a > b) std::swap(a, b);
        par2[b] = a;
        if (color[v] != 1 && color[par[v]] != 1) {
            par0[b] = a;
        }
        if (color[v] != 0 && color[par[v]] != 0) {
            par1[b - n0] = std::max(a - n0, 0);
        }
    }
    f(par2, original_vs2, n0, n1);
    one_third_centroid_decomposition(par0, original_vs0, f);
    one_third_centroid_decomposition(par1, original_vs1, f);
    return;
}

template <class F>
void one_third_centroid_decomposition_virtual_real(
    const std::vector<int> &par, const std::vector<int> &original_vs,
    const std::vector<int> &is_real, F f) {
    const int n = (int)par.size();
    assert(n > 1);
    if (n == 2) {
        if (is_real[0] && is_real[1]) {
            f(par, original_vs, {0, 1});
        }
        return;
    }
    int center = -1;
    std::vector<int> sz(n, 1);

    for (const int v : std::views::iota(0, n) | std::views::reverse) {
        if (sz[v] >= (n + 1) / 2) {
            center = v;
            break;
        }
        sz[par[v]] += sz[v];
    }

    std::vector<int> color(n, -1);
    std::vector<int> ord(n, -1);
    ord[center] = 0;
    int t = 1;
    int red = n - sz[center];
    for (int v = par[center]; v != -1; v = par[v]) {
        ord[v] = t++;
        color[v] = 0;
    }
    for (const int v : std::views::iota(1, n)) {
        if (par[v] == center && 3 * (red + sz[v]) <= 2 * (n - 1)) {
            red += sz[v];
            ord[v] = t++;
            color[v] = 0;
        }
    }
    for (const int v : std::views::iota(1, n)) {
        if (v != center && color[v] == -1 && color[par[v]] == 0) {
            ord[v] = t++;
            color[v] = 0;
        }
    }
    const int n0 = t - 1;
    for (const int v : std::views::iota(1, n)) {
        if (v != center && color[v] == -1) {
            ord[v] = t++;
            color[v] = 1;
        }
    }
    assert(t == n);
    const int n1 = n - 1 - n0;
    std::vector<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(n, -1);
    std::vector<int> original_vs0(n0 + 1), original_vs1(n1 + 1),
        original_vs2(n);
    std::vector<int> is_real0(n0 + 1), is_real1(n1 + 1), is_real2(n);
    for (const int i : std::views::iota(0, n)) {
        int v = ord[i];
        original_vs2[v] = original_vs[i];
        is_real2[v] = is_real[i];
        if (color[i] != 1) {
            original_vs0[v] = original_vs[i];
            is_real0[v] = is_real[i];
        }
        if (color[i] != 0) {
            int idx = std::max(v - n0, 0);
            original_vs1[idx] = original_vs[i];
            is_real1[idx] = is_real[i];
        }
    }
    for (const int v : std::views::iota(1, n)) {
        int a = ord[v], b = ord[par[v]];
        if (a > b) std::swap(a, b);
        par2[b] = a;
        if (color[v] != 1 && color[par[v]] != 1) {
            par0[b] = a;
        }
        if (color[v] != 0 && color[par[v]] != 0) {
            par1[b - n0] = std::max(a - n0, 0);
        }
    }
    if (is_real[center]) {
        color.assign(n, -1);
        color[0] = 0;
        for (const int v : std::views::iota(1, n)) {
            if (is_real2[v]) color[v] = 1;
        }
        f(par2, original_vs2, color);
        is_real0[0] = is_real1[0] = is_real2[0] = 0;
    }
    color.assign(n, -1);
    for (const int v : std::views::iota(1, n)) {
        if (is_real2[v]) {
            color[v] = int(v > n0);
        }
    }
    f(par2, original_vs2, color);
    one_third_centroid_decomposition_virtual_real(par0, original_vs0, is_real0,
                                                  f);
    one_third_centroid_decomposition_virtual_real(par1, original_vs1, is_real1,
                                                  f);
    return;
}

}  // namespace internal

template <int MODE, class T, class F>
void centroid_decomposition(const Graph<T> &tree, F f) {
    int n = (int)tree.size();
    if (n == 1) return;
    std::vector<int> bfs_order(n), par(n, -1);
    bfs_order[0] = 0;
    int l = 0, r = 1;
    while (l < r) {
        int v = bfs_order[l++];
        for (auto e : tree[v]) {
            int nv = e.to;
            if (nv == par[v]) continue;
            bfs_order[r++] = nv;
            par[nv] = v;
        }
    }
    assert(l == n && r == n);
    {
        std::vector<int> relabel(n);
        for (int i : std::views::iota(0, n)) {
            relabel[bfs_order[i]] = i;
        }
        std::vector<int> relabel_par(n, -1);
        for (int i : std::views::iota(1, n)) {
            relabel_par[relabel[i]] = relabel[par[i]];
        }
        std::swap(par, relabel_par);
    }
    static_assert(MODE == 0 || MODE == 1 || MODE == 2);
    if constexpr (MODE == 0) {
        internal::centroid_decomposition_dfs_naive(par, bfs_order, f);
    } else if constexpr (MODE == 1) {
        internal::one_third_centroid_decomposition(par, bfs_order, f);
    } else {
        internal::one_third_centroid_decomposition_virtual_real(
            par, bfs_order, std::vector<int>(n, 1), f);
    }
}

}  // namespace ebi
#line 9 "test/yuki/yuki_1796.test.cpp"

namespace ebi {

using mint = modint998244353;

void main_() {
    Binomial<mint> binom(300000);
    int n;
    std::cin >> n;
    std::vector<mint> q(n);
    std::cin >> q;
    Graph<int> tree(n);
    auto ans = q;
    rep(i, 0, n - 1) {
        int u, v;
        std::cin >> u >> v;
        u--;
        v--;
        tree.add_edge(u, v, 1);
        tree.add_edge(v, u, 1);
        ans[u] += q[v] * binom.inv(4);
        ans[v] += q[u] * binom.inv(4);
    }
    tree.build();
    auto calc = [&](const std::vector<int> &par, const std::vector<int> &vs,
                    int n0, int n1) {
        int sz = (int)par.size();
        std::vector<int> depth(sz, 0);
        rep(i, 1, sz) {
            depth[i] = depth[par[i]] + 1;
        }
        auto calc2 = [&](int l0, int r0, int l1, int r1) -> void {
            int sz0 = *std::max_element(depth.begin() + l0, depth.begin() + r0);
            int sz1 = *std::max_element(depth.begin() + l1, depth.begin() + r1);
            std::vector<mint> f(sz0 + sz1 + 1), g(sz1 + 1);
            rep(i, 0, f.size()) {
                f[i] = binom.inv(i + 1) * binom.inv(i + 1);
            }
            rep(i, l1, r1) {
                g[depth[i]] += q[vs[i]];
            }
            auto h = middle_product<mint>(f, g);
            assert((int)h.size() == sz0 + 1);
            rep(i, l0, r0) {
                ans[vs[i]] += h[depth[i]];
            }
        };
        calc2(1, 1 + n0, 1 + n0, 1 + n0 + n1);
        calc2(1 + n0, 1 + n0 + n1, 1, 1 + n0);
    };
    centroid_decomposition<1>(tree, calc);
    rep(i, 0, n) {
        ans[i] *= binom.f(n) * binom.f(n);
        std::cout << ans[i] << '\n';
    }
}

}  // namespace ebi

int main() {
    ebi::fast_io();
    int t = 1;
    // std::cin >> t;
    while (t--) {
        ebi::main_();
    }
    return 0;
}
0