結果

問題 No.2794 I Love EDPC-T
ユーザー ecotteaecottea
提出日時 2024-05-26 15:07:02
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 147 ms / 3,000 ms
コード長 22,667 bytes
コンパイル時間 9,830 ms
コンパイル使用メモリ 348,344 KB
実行使用メモリ 21,184 KB
最終ジャッジ日時 2024-12-20 21:34:42
合計ジャッジ時間 11,999 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// QCFium
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
int DX[4] = {1, 0, -1, 0}; // 4
int DY[4] = {0, 1, 0, -1};
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // mod
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE MLE
#endif
// 0:30
//O(n log n)
/*
* a[0..n)
*
* DP
*/
template <class T>
int LIS_length_to_val(const vector<T>& a) {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_x
int n = sz(a);
// dp_i[j] : a[0..i) j
// 調
vector<T> dp(n + 1, T(INFL));
dp[0] = -T(INFL);
//a[0..5) = [4, 2, 3, 3, 1]
// dp_0[0..5] = [-INF, INF, INF, INF, INF, INF]
// dp_1[0..5] = [-INF, 4, INF, INF, INF, INF]
// dp_2[0..5] = [-INF, 2, INF, INF, INF, INF]
// dp_3[0..5] = [-INF, 2, 3, INF, INF, INF]
// dp_4[0..5] = [-INF, 2, 3, INF, INF, INF]
// dp_5[0..5] = [-INF, 1, 3, INF, INF, INF]
rep(i, n) {
// a[i] j
int j = lbpos(dp, a[i]);
// j a[i]
dp[j] = a[i];
// a[i]
// a[i]
}
//
int res = 0;
repir(j, n, 1) {
if (dp[j] != T(INFL)) {
res = j;
break;
}
}
return res;
}
// 0:43
mint naive(int n, string s) {
vi p(n);
iota(all(p), 1);
mint res = 0;
repp(p) {
bool ok = true;
rep(i, n - 1) {
if ((s[i] == '<') != (p[i] < p[i + 1])) {
ok = false;
break;
}
}
if (!ok) continue;
if (LIS_length_to_val(p) != 2) continue;
dump(p);
res++;
}
return res;
}
//
/*
* Factorial_mint(int N) : O(n)
* N
*
* mint fact(int n) : O(1)
* n!
*
* mint fact_inv(int n) : O(1)
* 1/n! n 0
*
* mint inv(int n) : O(1)
* 1/n
*
* mint perm(int n, int r) : O(1)
* nPr
*
* mint bin(int n, int r) : O(1)
* nCr
*
* mint bin_inv(int n, int r) : O(1)
* 1/nCr
*
* mint mul(vi rs) : O(|rs|)
* nC[rs] n = Σrs
*
* mint hom(int n, int r) : O(1)
* nHr = n+r-1Cr 0H0 = 1
*
* mint neg_bin(int n, int r) : O(1)
* nCr = (-1)^r -n+r-1Cr n ≦ 0, r ≧ 0
*/
class Factorial_mint {
int n_max;
//
vm fac, fac_inv;
public:
// n! O(n)
Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b
fac[0] = 1;
repi(i, 1, n) fac[i] = fac[i - 1] * i;
fac_inv[n] = fac[n].inv();
repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
}
Factorial_mint() : n_max(0) {} //
// n!
mint fact(int n) const {
// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b
Assert(0 <= n && n <= n_max);
return fac[n];
}
// 1/n! n 0
mint fact_inv(int n) const {
// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h
Assert(n <= n_max);
if (n < 0) return 0;
return fac_inv[n];
}
// 1/n
mint inv(int n) const {
// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d
Assert(0 < n && n <= n_max);
return fac[n - 1] * fac_inv[n];
}
// nPr
mint perm(int n, int r) const {
// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e
Assert(n <= n_max);
if (r < 0 || n - r < 0) return 0;
return fac[n] * fac_inv[n - r];
}
// nCr
mint bin(int n, int r) const {
// verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod
Assert(n <= n_max);
if (r < 0 || n - r < 0) return 0;
return fac[n] * fac_inv[r] * fac_inv[n - r];
}
// 1/nCr
mint bin_inv(int n, int r) const {
// verify : https://www.codechef.com/problems/RANDCOLORING
Assert(n <= n_max);
Assert(r >= 0 || n - r >= 0);
return fac_inv[n] * fac[r] * fac[n - r];
}
// nC[rs]
mint mul(const vi& rs) const {
// verify : https://yukicoder.me/problems/no/2141
if (*min_element(all(rs)) < 0) return 0;
int n = accumulate(all(rs), 0);
Assert(n <= n_max);
mint res = fac[n];
repe(r, rs) res *= fac_inv[r];
return res;
}
// nHr = n+r-1Cr 0H0 = 1
mint hom(int n, int r) {
// verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2
if (n == 0) return (int)(r == 0);
Assert(n + r - 1 <= n_max);
if (r < 0 || n - 1 < 0) return 0;
return fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1];
}
// nCr n ≦ 0, r ≧ 0
mint neg_bin(int n, int r) {
// verify : https://atcoder.jp/contests/abc345/tasks/abc345_g
if (n == 0) return (int)(r == 0);
Assert(-n + r - 1 <= n_max);
if (r < 0 || -n - 1 < 0) return 0;
return (r & 1 ? -1 : 1) * fac[-n + r - 1] * fac_inv[r] * fac_inv[-n - 1];
}
};
// 1:43
// RS辿
// 2:04
// (P, Q) P Q
mint WA(int n, string s) {
rep(i, n) if (s[i] == '<' && s[i + 1] == '<') return 0;
Factorial_mint fm(n);
mint res = 0;
int h2_min = 0;
repe(c, s) h2_min += c == '<';
if (h2_min == 0) return 0;
repi(h2, h2_min, n / 2) {
int h1 = n - h2;
mint P = fm.fact(n);
P *= fm.fact_inv(h2);
P *= fm.fact_inv(h1 + 1);
P *= h1 - h2 + 1;
mint Q = 1; // 0
res += P * Q;
dump(h2, P, Q, P * Q);
}
return res;
}
//1 O(n)
/*
* s[0..n) '0' '1'
*/
vi length1(const string& s, char one = '1') {
// verify : https://atcoder.jp/contests/agc046/tasks/agc046_c
vi len;
int l = 0;
repe(c, s) {
if (c == one) {
l++;
}
else {
len.push_back(l);
l = 0;
}
}
len.push_back(l);
return len;
}
// 2:23
// Q 1 2 DP O(N^3)
mint TLE(int n, string s) {
rep(i, n) if (s[i] == '<' && s[i + 1] == '<') return 0;
auto lens = length1(s, '>');
++lens;
int K = sz(lens);
dump("lens:", lens);
// dp_i[j] : lens[0..i) j
vm dp(lens[0] + 1);
dp.back() = 1;
dump("dp:"); dump(dp);
repi(k, 1, K - 2) {
vm ndp(sz(dp) + lens[k]);
rep(j, sz(dp)) {
// hj : j 使
repi(h2, 1, min(lens[k] - 1, j)) {
int h1 = lens[k] - h2;
ndp[j + h1 - h2] += dp[j];
}
}
dp = move(ndp);
dump(dp);
}
{
int k = K - 1;
vm ndp(sz(dp) + lens[k]);
rep(j, sz(dp)) {
// hj : j 使
repi(h2, 1, min(lens[k], j)) {
int h1 = lens[k] - h2;
ndp[j + h1 - h2] += dp[j];
}
}
dp = move(ndp);
dump(dp);
}
dp.resize(n + 1);
Factorial_mint fm(n);
mint res = 0;
int h2_min = K - 1;
if (h2_min == 0) return 0;
dump("h2, P, Q, PQ:");
repi(h2, h2_min, n / 2) {
int h1 = n - h2;
mint P = fm.fact(n);
P *= fm.fact_inv(h2);
P *= fm.fact_inv(h1 + 1);
P *= h1 - h2 + 1;
mint Q = dp[h1 - h2];
res += P * Q;
dump(h2, P, Q, P * Q);
}
return res;
}
//
/*
* Thinning_imos<T>(int n, int m) : O(n + m)
* m a[0..n) = 0
*
* add(int l, int r, int k, T val) : O(1)
* S = {i∈[l..r) | i=k (mod m)} a[S] += val
*
* void execute() : O(n)
*
*
* T [](int i) : O(1)
* a[i]
* : execute()
*/
template <class T>
class Thinning_imos {
int n, m;
vector<T> v;
bool ex = false;
public:
// m a[0..n) = 0
Thinning_imos(int n, int m) : n(n), m(m), v(n + m) {
// verify : https://yukicoder.me/problems/no/2359
}
Thinning_imos() : n(0), m(1) {}
//
inline T const& operator[](int i) const { return v[i]; }
inline T& operator[](int i) { return v[i]; }
// S = {i∈[l..r) | i=k (mod m)} a[S] += val
void add(int l, int r, int k, T val) {
// verify : https://yukicoder.me/problems/no/2359
chmax(l, 0); chmin(r, n);
if (l >= r) return;
r += smod(k - r, m);
l += smod(k - l, m);
v[l] += val;
v[r] -= val;
}
//
void execute() {
// verify : https://yukicoder.me/problems/no/2359
rep(i, n) v[i + m] += v[i];
ex = true;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, Thinning_imos a) {
if (!a.ex) a.execute();
rep(i, a.n) os << a[i] << " ";
return os;
}
#endif
};
// 2:45
// TLE() O(N^2)
mint TLE2(int n, string s) { // RE
rep(i, n) if (s[i] == '<' && s[i + 1] == '<') return 0;
auto lens = length1(s, '>');
++lens;
int K = sz(lens);
dump("lens:", lens);
// dp_i[j] : lens[0..i) j
vm dp(lens[0] + 1);
dp.back() = 1;
dump("dp:"); dump(dp);
repi(k, 1, K - 2) {
dump("- - -", k, "- - -");
int N = sz(dp);
int nN = N + lens[k];
Thinning_imos<mint> imos(nN, 2);
rep(j, N) {
imos.add(j + lens[k] - 2 * min(lens[k] - 1, j), j + lens[k] - 2 + 1, j + lens[k], dp[j]);
}
imos.execute();
dp.resize(nN);
rep(i, nN) dp[i] = imos[i];
while (!dp.empty() && dp.back() == 0) dp.pop_back();
if (dp.empty()) return 0;
dump(dp);
}
{
int k = K - 1;
dump("- - -", k, "- - -");
int N = sz(dp);
int nN = N + lens[k];
Thinning_imos<mint> imos(nN, 2);
rep(j, N) {
imos.add(j + lens[k] - 2 * min(lens[k], j), j + lens[k] - 2 + 1, j + lens[k], dp[j]);
}
imos.execute();
dp.resize(n + 1);
rep(i, nN) dp[i] = imos[i];
dump(dp);
}
Factorial_mint fm(n);
mint res = 0;
int h2_min = K - 1;
if (h2_min == 0) return 0;
dump("h2, P, Q, PQ:");
repi(h2, h2_min, n / 2) {
int h1 = n - h2;
mint P = fm.fact(n);
P *= fm.fact_inv(h2);
P *= fm.fact_inv(h1 + 1);
P *= h1 - h2 + 1;
mint Q = dp[h1 - h2];
res += P * Q;
dump(h2, P, Q, P * Q);
}
return res;
}
// 3:13
//
constexpr int LIM = (int)1e5 + 10;
int lens[LIM]; int K = 0;
mint dp[LIM]; int N = 0;
mint imos[LIM];
mint USO(int n, const string& s) {
rep(i, n) if (s[i] == '<' && s[i + 1] == '<') return 0;
{
K = 0;
int l = 0;
repe(c, s) {
if (c == '>') {
l++;
}
else {
lens[K++] = l + 1;
l = 0;
}
}
lens[K++] = l + 1;
}
// rep(k, K) cerr << lens[k] << " "; cerr << endl;
// dp_i[j] : lens[0..i) j
rep(i, lens[0]) dp[i] = 0;
dp[lens[0]] = 1;
N = lens[0] + 1;
int par = lens[0] & 1;
rep(i, N) cout << (int)((i & 1) == par) * dp[i] << " "; cout << endl;
repi(k, 1, K - 2) {
dump("- - -", k, "- - -");
int nN = N + lens[k];
int npar = ~nN & 1;
for (int i = npar; i < nN + 2; i += 2) imos[i] = 0;
for (int j = par; j < N; j += 2) {
int l = j + lens[k] - 2 * min(lens[k] - 1, j);
int r = j + lens[k];
imos[l] += dp[j];
imos[r] -= dp[j];
}
for (int i = npar; i < nN; i += 2) {
dp[i] = imos[i];
imos[i + 2] += imos[i];
}
while (nN > 0 && dp[nN - 1] == 0) nN -= 2;
if (nN <= 0) return 0;
N = nN;
par = npar;
rep(i, N) cout << (int)((i & 1) == par) * dp[i] << " "; cout << endl;
}
{
int k = K - 1;
dump("- - -", k, "- - -");
int nN = N + lens[k];
int npar = ~nN & 1;
for (int i = npar; i < nN + 2; i += 2) imos[i] = 0;
for (int j = par; j < N; j += 2) {
int l = j + lens[k] - 2 * min(lens[k], j);
int r = j + lens[k];
imos[l] += dp[j];
imos[r] -= dp[j];
}
for (int i = npar; i < nN; i += 2) {
dp[i] = imos[i];
imos[i + 2] += imos[i];
}
par = npar;
rep(i, N) cout << (int)((i & 1) == par) * dp[i] << " "; cout << endl;
}
//
Factorial_mint fm(n);
mint res = 0;
int h2_min = K - 1;
if (h2_min == 0) return 0;
dump("h2, P, Q, PQ:");
repi(h2, h2_min, n / 2) {
int h1 = n - h2;
mint P = fm.fact(n);
P *= fm.fact_inv(h2);
P *= fm.fact_inv(h1 + 1);
P *= h1 - h2 + 1;
mint Q = dp[h1 - h2];
res += P * Q;
dump(h2, P, Q, P * Q);
}
return res;
}
// 14:41
/*
DP
0 0 0 1
- - - 1 - - -
0 0 1 0 1
- - - 2 - - -
0 1 0 2 0 1
- - - 3 - - -
0 0 3 0 3 0 1
- - - 4 - - -
0 3 0 6 0 4 0 1
- - - 5 - - -
0 0 9 0 10 0 5 0 1
- - - 6 - - -
0 9 0 19 0 15 0 6 0 1
- - - 7 - - -
0 0 28 0 34 0 21 0 7 0 1
- - - 8 - - -
0 28 0 62 0 55 0 28 0 8 0 1
- - - 9 - - -
0 0 90 0 117 0 83 0 36 0 9 0 1
- - - 10 - - -
0 90 0 117 0 83 0 36 0 9 0 1 0
0 = bin(9,6) - bin(9,3)
90 = bin(9,5) - bin(9,2)
117 = bin(9,4) - bin(9,1)
83 = bin(9,3) - bin(9,0)
*/
//mod 998244353O(n (log n)^2)
/*
* a n
*/
vm multi_convoluion(vvm a) {
// verify : https://judge.yosupo.jp/problem/product_of_polynomial_sequence
int m = sz(a);
if (m == 0) return vm{ 1 };
// (, )
priority_queue_rev<pii> q;
rep(i, m) {
if (a[i].empty()) return vm();
q.push({ sz(a[i]), i });
}
//
while (sz(q) >= 2) {
auto [ni, i] = q.top(); q.pop();
auto [nj, j] = q.top(); q.pop();
a[i] = convolution(a[i], a[j]);
q.push({ ni + nj - 1, i });
}
return a[q.top().second];
}
// 15:05
// O(N^2) DP O(N (log N)^2)
mint solve(int n, string s) {
rep(i, n) if (s[i] == '<' && s[i + 1] == '<') return 0;
auto lens = length1(s, '>');
++lens;
int K = sz(lens);
dump("lens:", lens);
vvm fs;
repi(k, 1, K - 2) {
vm f(lens[k] - 1, 1);
fs.push_back(f);
}
{
int k = K - 1;
vm f(lens[k], 1);
fs.push_back(f);
}
auto f = multi_convoluion(fs);
dump(f);
Factorial_mint fm(n);
mint res = 0;
int h2_min = K - 1;
if (h2_min == 0) return 0;
dump("h2, P, Q, PQ:");
int lp = -lens[0], rp = sz(f) - 1;
repi(h2, h2_min, n / 2) {
int h1 = n - h2;
mint P = fm.fact(n);
P *= fm.fact_inv(h2);
P *= fm.fact_inv(h1 + 1);
P *= h1 - h2 + 1;
dump(rp, lp, (0 <= rp ? f[rp] : 0) - (0 <= lp && lp < sz(f) ? f[lp] : 0));
mint Q = (0 <= rp ? f[rp] : 0) - (0 <= lp && lp < sz(f) ? f[lp] : 0);
res += P * Q;
lp++; rp--;
dump(h2, P, Q, P * Q);
}
return res;
}
void bug_find() {
#ifdef _MSC_VER
//
mute_dump = true;
mt19937_64 mt;
mt.seed((int)time(NULL));
uniform_int_distribution<ll> rnd(0LL, 1LL << 60);
rep(hoge, 1000) {
int n = rnd(mt) % 100 + 2;
string s;
rep(i, n - 1) s += "<>"[rnd(mt) % 2];
// cout << n << " " << s << endl;
auto res_naive = TLE(n, s);
// cout << "!" << endl;
auto res_solve = solve(n, s);
if (res_naive != res_solve) {
cout << "----------error!----------" << endl;
cout << "input:" << endl;
cout << n << endl;
cout << s << endl;
cout << "results:" << endl;
cout << res_naive << endl;
cout << res_solve << endl;
cout << "--------------------------" << endl;
}
}
mute_dump = false;
exit(0);
#endif
}
int main() {
input_from_file("input.txt");
// output_to_file("output.txt");
bug_find();
int n; string s;
cin >> n >> s;
dump(n); dump(s); dump("----");
dump(TLE(n, s)); dump("----");
// 3:04
// O(N^2)
// cout << TLE2(n, s) << endl;
// 3:28
// O(N^2)
// 3:50
// dp[] 1/2 2
// 13:06
// 2 1
// AC → 2,213 ms / 4,000 ms AC
// 15:06
// O(N^2) DP O(N (log N)^2)
cout << solve(n, s) << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0