結果
問題 | No.2794 I Love EDPC-T |
ユーザー | ecottea |
提出日時 | 2024-05-26 20:38:42 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 10,882 bytes |
コンパイル時間 | 370 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 323,300 KB |
最終ジャッジ日時 | 2024-12-20 21:27:14 |
合計ジャッジ時間 | 37,289 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 73 ms
77,704 KB |
testcase_01 | AC | 74 ms
69,376 KB |
testcase_02 | AC | 71 ms
70,144 KB |
testcase_03 | AC | 71 ms
69,504 KB |
testcase_04 | AC | 70 ms
69,504 KB |
testcase_05 | AC | 73 ms
69,632 KB |
testcase_06 | AC | 117 ms
78,464 KB |
testcase_07 | AC | 159 ms
79,652 KB |
testcase_08 | AC | 199 ms
80,096 KB |
testcase_09 | AC | 79 ms
69,376 KB |
testcase_10 | AC | 77 ms
69,376 KB |
testcase_11 | AC | 78 ms
69,632 KB |
testcase_12 | AC | 79 ms
69,376 KB |
testcase_13 | AC | 593 ms
108,476 KB |
testcase_14 | AC | 317 ms
83,240 KB |
testcase_15 | AC | 619 ms
111,608 KB |
testcase_16 | AC | 2,424 ms
310,316 KB |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | AC | 1,404 ms
298,016 KB |
testcase_21 | AC | 1,347 ms
259,076 KB |
testcase_22 | AC | 1,318 ms
257,892 KB |
testcase_23 | AC | 1,316 ms
256,148 KB |
testcase_24 | AC | 1,376 ms
258,220 KB |
testcase_25 | AC | 1,355 ms
253,952 KB |
testcase_26 | AC | 75 ms
71,496 KB |
testcase_27 | AC | 106 ms
93,512 KB |
testcase_28 | AC | 301 ms
120,460 KB |
testcase_29 | AC | 285 ms
113,468 KB |
testcase_30 | AC | 2,730 ms
290,256 KB |
testcase_31 | TLE | - |
testcase_32 | TLE | - |
testcase_33 | AC | 1,964 ms
288,428 KB |
ソースコード
# https://github.com/not522/ac-library-python import typing def _ceil_pow2(n: int) -> int: x = 0 while (1 << x) < n: x += 1 return x def _bsf(n: int) -> int: x = 0 while n % 2 == 0: x += 1 n //= 2 return x def _is_prime(n: int) -> bool: ''' Reference: M. Forisek and J. Jancina, Fast Primality Testing for Integers That Fit into a Machine Word ''' if n <= 1: return False if n == 2 or n == 7 or n == 61: return True if n % 2 == 0: return False d = n - 1 while d % 2 == 0: d //= 2 for a in (2, 7, 61): t = d y = pow(a, t, n) while t != n - 1 and y != 1 and y != n - 1: y = y * y % n t <<= 1 if y != n - 1 and t % 2 == 0: return False return True def _inv_gcd(a: int, b: int) -> typing.Tuple[int, int]: a %= b if a == 0: return (b, 0) # Contracts: # [1] s - m0 * a = 0 (mod b) # [2] t - m1 * a = 0 (mod b) # [3] s * |m1| + t * |m0| <= b s = b t = a m0 = 0 m1 = 1 while t: u = s // t s -= t * u m0 -= m1 * u # |m1 * u| <= |m1| * s <= b # [3]: # (s - t * u) * |m1| + t * |m0 - m1 * u| # <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) # = s * |m1| + t * |m0| <= b s, t = t, s m0, m1 = m1, m0 # by [3]: |m0| <= b/g # by g != b: |m0| < b/g if m0 < 0: m0 += b // s return (s, m0) def _primitive_root(m: int) -> int: if m == 2: return 1 if m == 167772161: return 3 if m == 469762049: return 3 if m == 754974721: return 11 if m == 998244353: return 3 divs = [2] + [0] * 19 cnt = 1 x = (m - 1) // 2 while x % 2 == 0: x //= 2 i = 3 while i * i <= x: if x % i == 0: divs[cnt] = i cnt += 1 while x % i == 0: x //= i i += 2 if x > 1: divs[cnt] = x cnt += 1 g = 2 while True: for i in range(cnt): if pow(g, (m - 1) // divs[i], m) == 1: break else: return g g += 1 class ModContext: context: typing.List[int] = [] def __init__(self, mod: int) -> None: assert 1 <= mod self.mod = mod def __enter__(self) -> None: self.context.append(self.mod) def __exit__(self, exc_type: typing.Any, exc_value: typing.Any, traceback: typing.Any) -> None: self.context.pop() @classmethod def get_mod(cls) -> int: return cls.context[-1] class Modint: def __init__(self, v: int = 0) -> None: self._mod = ModContext.get_mod() if v == 0: self._v = 0 else: self._v = v % self._mod def mod(self) -> int: return self._mod def val(self) -> int: return self._v def __iadd__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): self._v += rhs._v else: self._v += rhs if self._v >= self._mod: self._v -= self._mod return self def __isub__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): self._v -= rhs._v else: self._v -= rhs if self._v < 0: self._v += self._mod return self def __imul__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): self._v = self._v * rhs._v % self._mod else: self._v = self._v * rhs % self._mod return self def __ifloordiv__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): inv = rhs.inv()._v else: inv = atcoder._math._inv_gcd(rhs, self._mod)[1] self._v = self._v * inv % self._mod return self def __pos__(self) -> 'Modint': return self def __neg__(self) -> 'Modint': return Modint() - self def __pow__(self, n: int) -> 'Modint': assert 0 <= n return Modint(pow(self._v, n, self._mod)) def inv(self) -> 'Modint': eg = _inv_gcd(self._v, self._mod) assert eg[0] == 1 return Modint(eg[1]) def __add__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): result = self._v + rhs._v if result >= self._mod: result -= self._mod return raw(result) else: return Modint(self._v + rhs) def __sub__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): result = self._v - rhs._v if result < 0: result += self._mod return raw(result) else: return Modint(self._v - rhs) def __mul__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): return Modint(self._v * rhs._v) else: return Modint(self._v * rhs) def __floordiv__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): inv = rhs.inv()._v else: inv = _inv_gcd(rhs, self._mod)[1] return Modint(self._v * inv) def __eq__(self, rhs: typing.Union['Modint', int]) -> bool: # type: ignore if isinstance(rhs, Modint): return self._v == rhs._v else: return self._v == rhs def __ne__(self, rhs: typing.Union['Modint', int]) -> bool: # type: ignore if isinstance(rhs, Modint): return self._v != rhs._v else: return self._v != rhs def raw(v: int) -> Modint: x = Modint() x._v = v return x _sum_e = {} # _sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] def _butterfly(a: typing.List[Modint]) -> None: g = _primitive_root(a[0].mod()) n = len(a) h = _ceil_pow2(n) if a[0].mod() not in _sum_e: es = [Modint(0)] * 30 # es[i]^(2^(2+i)) == 1 ies = [Modint(0)] * 30 cnt2 = _bsf(a[0].mod() - 1) e = Modint(g) ** ((a[0].mod() - 1) >> cnt2) ie = e.inv() for i in range(cnt2, 1, -1): # e^(2^i) == 1 es[i - 2] = e ies[i - 2] = ie e = e * e ie = ie * ie sum_e = [Modint(0)] * 30 now = Modint(1) for i in range(cnt2 - 2): sum_e[i] = es[i] * now now *= ies[i] _sum_e[a[0].mod()] = sum_e else: sum_e = _sum_e[a[0].mod()] for ph in range(1, h + 1): w = 1 << (ph - 1) p = 1 << (h - ph) now = Modint(1) for s in range(w): offset = s << (h - ph + 1) for i in range(p): left = a[i + offset] right = a[i + offset + p] * now a[i + offset] = left + right a[i + offset + p] = left - right now *= sum_e[_bsf(~s)] _sum_ie = {} # _sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] def _butterfly_inv(a: typing.List[Modint]) -> None: g = _primitive_root(a[0].mod()) n = len(a) h = _ceil_pow2(n) if a[0].mod() not in _sum_ie: es = [Modint(0)] * 30 # es[i]^(2^(2+i)) == 1 ies = [Modint(0)] * 30 cnt2 = _bsf(a[0].mod() - 1) e = Modint(g) ** ((a[0].mod() - 1) >> cnt2) ie = e.inv() for i in range(cnt2, 1, -1): # e^(2^i) == 1 es[i - 2] = e ies[i - 2] = ie e = e * e ie = ie * ie sum_ie = [Modint(0)] * 30 now = Modint(1) for i in range(cnt2 - 2): sum_ie[i] = ies[i] * now now *= es[i] _sum_ie[a[0].mod()] = sum_ie else: sum_ie = _sum_ie[a[0].mod()] for ph in range(h, 0, -1): w = 1 << (ph - 1) p = 1 << (h - ph) inow = Modint(1) for s in range(w): offset = s << (h - ph + 1) for i in range(p): left = a[i + offset] right = a[i + offset + p] a[i + offset] = left + right a[i + offset + p] = Modint( (a[0].mod() + left.val() - right.val()) * inow.val()) inow *= sum_ie[_bsf(~s)] def convolution_mod(a: typing.List[Modint], b: typing.List[Modint]) -> typing.List[Modint]: n = len(a) m = len(b) if n == 0 or m == 0: return [] if min(n, m) <= 60: if n < m: n, m = m, n a, b = b, a ans = [Modint(0) for _ in range(n + m - 1)] for i in range(n): for j in range(m): ans[i + j] += a[i] * b[j] return ans z = 1 << _ceil_pow2(n + m - 1) while len(a) < z: a.append(Modint(0)) _butterfly(a) while len(b) < z: b.append(Modint(0)) _butterfly(b) for i in range(z): a[i] *= b[i] _butterfly_inv(a) a = a[:n + m - 1] iz = Modint(z).inv() for i in range(n + m - 1): a[i] *= iz return a def convolution(mod: int, a: typing.List[typing.Any], b: typing.List[typing.Any]) -> typing.List[typing.Any]: n = len(a) m = len(b) if n == 0 or m == 0: return [] with ModContext(mod): a2 = list(map(Modint, a)) b2 = list(map(Modint, b)) return list(map(lambda c: c.val(), convolution_mod(a2, b2))) n = int(input()) s = input() A = [] l = 0 for i in range(n - 1): if s[i] == '>': l += 1 else: A.append(l) l = 0 A.append(l) L = len(A) if L == 1: print(0) exit(0) # 階乗とその逆数 MOD = 998244353 fac = [1] * (2 * n + 1) for i in range(1, 2 * n + 1): fac[i] = (fac[i - 1] * i) % MOD fac_inv = [1] * (2 * n + 1) fac_inv[2 * n] = pow(fac[2 * n], MOD - 2, MOD) for i in range(2 * n - 1, 0, -1): fac_inv[i] = (fac_inv[i + 1] * (i + 1)) % MOD fs = [] for l in range(L): a = A[l] if l < L - 1: a -= 1 if l > 0: a -= 1 if a == -2: print(0) exit(0) f = [] for i in range(n + 1): if a - i + 1 < i: break f.append(fac[a - i + 1] * fac_inv[a - 2 * i + 1] % MOD * fac_inv[i] % MOD) fs.append(f) b = 1 while b < L: for i in range(0, L - b, 2 * b): fs[i] = convolution(MOD, fs[i], fs[i + b]) b <<= 1 x = fs[0] while len(x) < n: x.append(0) res = 0 for i in range(L - 1, n): sgn = -1 if (i - (L - 1)) & 1 else 1 cat = fac[2 * (n - i)] * fac_inv[n - i] % MOD * fac_inv[n - i + 1] % MOD res += sgn * cat * x[i - (L - 1)] res %= MOD print(res)