結果

問題 No.2771 Personal Space
ユーザー PNJPNJ
提出日時 2024-05-31 22:19:26
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,702 ms / 2,000 ms
コード長 3,416 bytes
コンパイル時間 176 ms
コンパイル使用メモリ 82,076 KB
実行使用メモリ 123,560 KB
最終ジャッジ日時 2024-12-20 23:54:12
合計ジャッジ時間 30,590 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import heapq
class segtree():
n=1
size=1
log=2
d=[0]
op=None
e=10**15
def __init__(self,V,OP,E):
self.n=len(V)
self.op=OP
self.e=E
self.log=(self.n-1).bit_length()
self.size=1<<self.log
self.d=[E for i in range(2*self.size)]
for i in range(self.n):
self.d[self.size+i]=V[i]
for i in range(self.size-1,0,-1):
self.update(i)
def set(self,p,x):
assert 0<=p and p<self.n
p+=self.size
self.d[p]=x
for i in range(1,self.log+1):
self.update(p>>i)
def get(self,p):
assert 0<=p and p<self.n
return self.d[p+self.size]
def prod(self,l,r):
assert 0<=l and l<=r and r<=self.n
sml=self.e
smr=self.e
l+=self.size
r+=self.size
while(l<r):
if (l&1):
sml=self.op(sml,self.d[l])
l+=1
if (r&1):
smr=self.op(self.d[r-1],smr)
r-=1
l>>=1
r>>=1
return self.op(sml,smr)
def all_prod(self):
return self.d[1]
def max_right(self,l,f):
assert 0<=l and l<=self.n
assert f(self.e)
if l==self.n:
return self.n
l+=self.size
sm=self.e
while(1):
while(l%2==0):
l>>=1
if not(f(self.op(sm,self.d[l]))):
while(l<self.size):
l=2*l
if f(self.op(sm,self.d[l])):
sm=self.op(sm,self.d[l])
l+=1
return l-self.size
sm=self.op(sm,self.d[l])
l+=1
if (l&-l)==l:
break
return self.n
def min_left(self,r,f):
assert 0<=r and r<=self.n
assert f(self.e)
if r==0:
return 0
r+=self.size
sm=self.e
while(1):
r-=1
while(r>1 and (r%2)):
r>>=1
if not(f(self.op(self.d[r],sm))):
while(r<self.size):
r=(2*r+1)
if f(self.op(self.d[r],sm)):
sm=self.op(self.d[r],sm)
r-=1
return r+1-self.size
sm=self.op(self.d[r],sm)
if (r& -r)==r:
break
return 0
def update(self,k):
self.d[k]=self.op(self.d[2*k],self.d[2*k+1])
def __str__(self):
return str([self.get(i) for i in range(self.n)])
inf = 1 << 60
b = 10**6
def solve():
N,M = map(int,input().split())
segmax = segtree([0 for i in range(N+1)],max,0)
segmin = segtree([inf for i in range(N+1)],min,inf)
segmax.set(M,M)
segmin.set(M,M)
H = []
heapq.heappush(H,-(M-1)*b+1)
heapq.heappush(H,-(N-M)*b+N)
ans = [-1 for i in range(N)]
ans[0] = M
for i in range(1,N):
h = heapq.heappop(H)
u = h % b
ans[i] = u
if u > 1:
v = segmax.prod(0,u)
if v != u - 1:
m = (u + v) // 2
heapq.heappush(H,-(m-v)*b+m)
if u < N:
v = segmin.prod(u+1,N+1)
if v != u + 1:
m = (u + v) // 2
heapq.heappush(H,-(m-u)*b+m)
segmax.set(u,u)
segmin.set(u,u)
P = [0 for i in range(N)]
for i in range(N):
q = ans[i]
P[q-1] = i + 1
print(*P)
return
for _ in range(int(input())):
solve()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0