結果
問題 | No.2767 Add to Divide |
ユーザー |
![]() |
提出日時 | 2024-05-31 23:01:12 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,336 bytes |
コンパイル時間 | 2,797 ms |
コンパイル使用メモリ | 207,452 KB |
最終ジャッジ日時 | 2025-02-21 18:27:05 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 11 WA * 5 |
ソースコード
#include <bits/stdc++.h>using namespace std;template <class T>T modpow(T a, T b, T mod) {T cur = a % mod, res = 1 % mod;while (b) {if (b & 1) {res = (res * cur) % mod;}cur = (cur * cur) % mod;b >>= 1;}return res;}bool MillerRabin(long long n) {if (n <= 1) {return false;}if (n == 2 || n == 7 || n == 61) {return true;}if (n % 2 == 0) {return false;}vector<long long> A;if (n < 4759123141) {A = {2, 7, 61};} else {A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};}long long s = 0, d = n - 1;while (d % 2 == 0) {s++;d >>= 1;}for (auto a : A) {if (a % n == 0) {return true;}long long x = modpow<__int128_t>(a, d, n);if (x == 1) {continue;}bool ok = false;for (int i = 0; i < s; i++) {if (x == n - 1) {ok = true;break;}x = (__int128_t)x * x % n;}if (!ok) {return false;}}return true;}long long gcd(long long x, long long y) {if (y == 0) {return x;}return gcd(y, x % y);}unsigned int xorshift() {static unsigned int x = 123456789, y = 362436069, z = 521288629, w = 88675123;unsigned int t = (x ^ (x << 11));x = y;y = z;z = w;return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)));}long long Pollard(long long n) {if (n % 2 == 0) {return 2LL;}if (MillerRabin(n)) {return n;}long long i = 0;while (true) {i++;long long r = xorshift();auto f = [&](long long x) {return (__int128_t(x) * x + r) % n;};long long x = i, y = f(x);while (true) {long long p = gcd(abs(y - x + n), n);if (p == 0 || p == n) {break;}if (p != 1) {return p;}x = f(x);y = f(f(y));}}}vector<long long> prime_factorize(long long n) {if (n == 1) {return {};}long long p = Pollard(n);if (p == n) {return {p};}vector<long long> l = prime_factorize(p);vector<long long> r = prime_factorize(n / p);for (auto x : r) {l.emplace_back(x);}sort(l.begin(), l.end());return l;}vector<long long> divisors(long long n) {if (n == 1) {return {1LL};}auto divisor_dfs = [&](auto divisor_dfs, vector<pair<long long, long long>> &p, long long t, int cur, vector<long long> &res) -> void {if (cur == p.size()) {res.push_back(t);return;}divisor_dfs(divisor_dfs, p, t, cur + 1, res);for (int i = 0; i < p[cur].second; i++) {t *= p[cur].first;divisor_dfs(divisor_dfs, p, t, cur + 1, res);}};vector<long long> res, pf = prime_factorize(n);vector<pair<long long, long long>> p;long long cnt = 1, now = pf[0];for (int i = 1; i < (int)pf.size(); i++) {if (pf[i] == now) {cnt++;} else {p.push_back({now, cnt});now = pf[i];cnt = 1;}}p.push_back({now, cnt});divisor_dfs(divisor_dfs, p, 1, 0, res);sort(res.begin(), res.end());return res;}int main() {int t;cin >> t;while (t--) {long long a, b;cin >> a >> b;if (a == b) {cout << 0 << endl;continue;}vector<long long> d = divisors(b - a);long long ans = 1000000000000000000;for (auto k : d) {if (k == 1) {continue;}long long q1 = (a % k == 0 ? a / k : a / k + 1);long long na = k * q1;long long q2 = (b % k == 0 ? b / k : b / k + 1);long long nb = k * q2;if (na - a >= 0 && na - a == nb - b && nb % na == 0) {ans = min(ans, na - a);}}cout << (ans != 1000000000000000000 ? ans : -1) << endl;}}