結果
問題 | No.877 Range ReLU Query |
ユーザー | deuteridayo |
提出日時 | 2024-06-10 18:54:00 |
言語 | C++17(clang) (17.0.6 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 193 ms / 2,000 ms |
コード長 | 5,490 bytes |
コンパイル時間 | 8,465 ms |
コンパイル使用メモリ | 183,992 KB |
実行使用メモリ | 13,956 KB |
最終ジャッジ日時 | 2024-06-10 18:54:13 |
合計ジャッジ時間 | 11,619 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 189 ms
13,072 KB |
testcase_12 | AC | 160 ms
11,864 KB |
testcase_13 | AC | 127 ms
11,272 KB |
testcase_14 | AC | 132 ms
10,964 KB |
testcase_15 | AC | 193 ms
13,376 KB |
testcase_16 | AC | 187 ms
12,904 KB |
testcase_17 | AC | 181 ms
13,108 KB |
testcase_18 | AC | 181 ms
12,872 KB |
testcase_19 | AC | 181 ms
13,700 KB |
testcase_20 | AC | 183 ms
13,956 KB |
ソースコード
// Smartphone Coding #include"bits/stdc++.h" #include"atcoder/all" using namespace std; using namespace atcoder; using lint = long long; using ulint = unsigned long long; using llint = __int128_t; #define endl '\n' int const INF = 1<<30; lint const INF64 = 1LL<<61; lint const mod107 = 1e9+7; using mint107 = modint1000000007; long const mod = 998244353; using mint = modint998244353; long myprime = 998100007; lint ceilDiv(lint a, lint b){if(a%b==0){return a/b;} if(a>=0){return (a/b)+1;} else{return -((-a)/b);}} lint floorDiv(lint a, lint b){if(a%b==0){return a/b;} if(a>=0){return (a/b);} else{return -((-a)/b)-1;}} lint Sqrt(lint x){lint upper = 1e9;lint lower = 0;while(upper - lower > 0){lint mid = (1+upper + lower)/2;if(mid * mid > x){upper = mid-1;}else{lower = mid;}}return upper;} lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);} lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;} lint chmin(vector<lint>&v){lint ans = INF64;for(lint i:v){ans = min(ans, i);}return ans;} lint chmax(vector<lint>&v){lint ans = -INF64;for(lint i:v){ans = max(ans, i);}return ans;} double dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));} string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;} string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;} vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j] <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}} lint Kai[250001]; bool firstCallnCr = true; lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=250000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr = false;} if(n<0)return 0; if(n < r)return 0;if(r<0)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;} #define rep(i, n) for(int i = 0; i < n; i++) #define rrep(i, n) for(int i = n-1; i >=0; i--) #define repp(i, x, y) for(int i = x; i < y; i++) #define vec vector #define pb push_back #define eb emplace_back #define se second #define fi first #define al(x) x.begin(),x.end() #define ral(x) x.rbegin(),x.rend() #define ins insert using str=string; struct Frac { lint upper, lower; Frac() { Frac(0,1); } Frac(lint u, lint l) { assert(l != 0); if(u <= 0 && l < 0) { upper = -u; lower = -l; } else { upper = u; lower = l; } reduction(); } Frac(lint u) { upper = u; lower = 1; } void reduction() { if(upper != 0) { lint g = gcd(abs(upper), abs(lower)); upper /= g; lower /= g; if(lower < 0) { lower *= -1; upper *= -1; } } else { lower = 1; } } Frac operator+(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower + lower*other.upper; return Frac(U, L); } Frac operator-(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower - lower*other.upper; upper = U; lower = L; return Frac(U, L); } bool operator<=(const Frac &other) { return upper*other.lower <= lower*other.upper; } Frac operator*(const Frac &other) { lint L = lower * other.lower; lint U = upper * other.upper; return Frac(U, L); } Frac operator/(const Frac &other) { assert(other.upper != 0); lint L = lower * other.upper; lint U = upper * other.lower; return Frac(U, L); } }; bool operator<(const Frac &left, const Frac &right) { return left.upper*right.lower < left.lower*right.upper; } template< typename T > T extgcd(T a, T b, T &x, T &y) { T d = a; if(b != 0) { d = extgcd(b, a % b, y, x); y -= (a / b) * x; } else { x = 1; y = 0; } return d; } struct edge{ int to; lint cost; edge(int t,lint c=1){ to=t; cost=c; } }; using graph = vector<vec<edge>>; vec<lint>dijkstra(int s, graph& g){ priority_queue<pair<lint,lint>>que; vec<lint> cost(g.size(),INF64); cost[s]=0; que.push({0,s}); while(!que.empty()){ auto q=que.top(); que.pop(); int v=q.second; for(auto& e:g[v]){ if(cost[e.to]>cost[v]+e.cost){ cost[e.to]=cost[v]+e.cost; que.push({-cost[e.to],e.to}); } } } return cost; } int main(){ int n,q;cin>>n>>q; int a[n]; fenwick_tree<lint>summ(n),cnt(n); vec<pair<int,int>>p; rep(i,n){ cin>>a[i]; summ.add(i,a[i]); cnt.add(i,1); p.pb({a[i],i}); } sort(al(p)); vec<vec<lint>>query; rep(qq,q){ int t,l,r,x; cin>>t>>l>>r>>x; query.pb({x,l-1,r,qq}); } sort(al(query)); int pt=0; vec<lint>ans(q); rep(qq,q){ int L=query[qq][1],R=query[qq][2]; lint x=query[qq][0]; int qid=query[qq][3]; while(pt<n && p[pt].fi<=x){ summ.add(p[pt].se,-p[pt].fi); cnt.add(p[pt].se,-1); pt++; } //cerr<<qid<<" "<<L<<" "<<R<<" "<<cnt.sum(L,R)<<endl; lint anss=summ.sum(L,R)-x *cnt.sum(L,R); ans[qid]=anss; } rep(i,q)cout<<ans[i]<<endl; }