結果

問題 No.877 Range ReLU Query
ユーザー deuteridayodeuteridayo
提出日時 2024-06-10 18:54:00
言語 C++17(clang)
(17.0.6 + boost 1.83.0)
結果
AC  
実行時間 193 ms / 2,000 ms
コード長 5,490 bytes
コンパイル時間 8,465 ms
コンパイル使用メモリ 183,992 KB
実行使用メモリ 13,956 KB
最終ジャッジ日時 2024-06-10 18:54:13
合計ジャッジ時間 11,619 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 1 ms
5,248 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 189 ms
13,072 KB
testcase_12 AC 160 ms
11,864 KB
testcase_13 AC 127 ms
11,272 KB
testcase_14 AC 132 ms
10,964 KB
testcase_15 AC 193 ms
13,376 KB
testcase_16 AC 187 ms
12,904 KB
testcase_17 AC 181 ms
13,108 KB
testcase_18 AC 181 ms
12,872 KB
testcase_19 AC 181 ms
13,700 KB
testcase_20 AC 183 ms
13,956 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// Smartphone Coding

#include"bits/stdc++.h"
#include"atcoder/all"
using namespace std;
using namespace atcoder;
using lint = long long;
using ulint = unsigned long long;
using llint = __int128_t;
#define endl '\n'
int const INF = 1<<30;
lint const INF64 = 1LL<<61;
lint const mod107 = 1e9+7;
using mint107 = modint1000000007;
long const mod = 998244353;
using mint = modint998244353;
long myprime = 998100007;
lint ceilDiv(lint a, lint b){if(a%b==0){return a/b;}
  if(a>=0){return (a/b)+1;}
  else{return -((-a)/b);}}
lint floorDiv(lint a, lint b){if(a%b==0){return a/b;}
  if(a>=0){return (a/b);}
  else{return -((-a)/b)-1;}}
lint Sqrt(lint x){lint upper = 1e9;lint lower = 0;while(upper - lower > 0){lint mid = (1+upper + lower)/2;if(mid * mid > x){upper = mid-1;}else{lower = mid;}}return upper;}
lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);}
lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;}
lint chmin(vector<lint>&v){lint ans = INF64;for(lint i:v){ans = min(ans, i);}return ans;}
lint chmax(vector<lint>&v){lint ans = -INF64;for(lint i:v){ans = max(ans, i);}return ans;}
double dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));}
string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;}
string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;}
vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j] <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}}
lint Kai[250001]; bool firstCallnCr = true; 
lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=250000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr = false;} if(n<0)return 0;
if(n < r)return 0;if(r<0)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;}
#define rep(i, n) for(int i = 0; i < n; i++)
#define rrep(i, n) for(int i = n-1; i >=0; i--)
#define repp(i, x, y) for(int i = x; i < y; i++)
#define vec vector
#define pb push_back
#define eb emplace_back
#define se second
#define fi first
#define al(x) x.begin(),x.end()
#define ral(x) x.rbegin(),x.rend()
#define ins insert
using str=string;

struct Frac {
    lint upper, lower;
    Frac() {
        Frac(0,1);
    }
    Frac(lint u, lint l) {
        assert(l != 0);
        if(u <= 0 && l < 0) {
            upper = -u;
            lower = -l;
        } else {
            upper = u;
            lower = l;
        }
        reduction();
    }

    Frac(lint u) {
        upper = u;
        lower = 1;
    } 

    void reduction() {
        if(upper != 0) {
            lint g = gcd(abs(upper), abs(lower));
            upper /= g;
            lower /= g;
        
            if(lower < 0) {
                lower *= -1;
                upper *= -1;
            }
        } else {
            lower = 1;
        }
    }

    Frac operator+(const Frac &other) {
        lint L = lower * other.lower;
        lint U = upper*other.lower + lower*other.upper;
        return Frac(U, L);
    }

    Frac operator-(const Frac &other) {
        lint L = lower * other.lower;
        lint U = upper*other.lower - lower*other.upper;
        upper = U;
        lower = L;
        return Frac(U, L);
    }

    bool operator<=(const Frac &other) {
        return upper*other.lower <= lower*other.upper;
    }

    Frac operator*(const Frac &other) {
        lint L = lower * other.lower;
        lint U = upper * other.upper;
        return Frac(U, L);
    }

    Frac operator/(const Frac &other) {
        assert(other.upper != 0);
        lint L = lower * other.upper;
        lint U = upper * other.lower;
        return Frac(U, L);
    }
};

bool operator<(const Frac &left, const Frac &right) {
    return left.upper*right.lower < left.lower*right.upper;
}

template< typename T >
T extgcd(T a, T b, T &x, T &y) {
  T d = a;
  if(b != 0) {
    d = extgcd(b, a % b, y, x);
    y -= (a / b) * x;
  } else {
    x = 1;
    y = 0;
  }
  return d;
}
struct edge{
    int to;
    lint cost;
	edge(int t,lint c=1){
		to=t;
		cost=c;
	}
};
using graph = vector<vec<edge>>;
vec<lint>dijkstra(int s, graph& g){
	priority_queue<pair<lint,lint>>que;
	vec<lint> cost(g.size(),INF64);
	cost[s]=0;
	que.push({0,s});
	while(!que.empty()){
		auto q=que.top();
		que.pop();
		int v=q.second;
		for(auto& e:g[v]){
			if(cost[e.to]>cost[v]+e.cost){
				cost[e.to]=cost[v]+e.cost;
				que.push({-cost[e.to],e.to});
			}
		}
	}
	return cost;
}


int main(){
	int n,q;cin>>n>>q;
	int a[n];
	fenwick_tree<lint>summ(n),cnt(n);
	vec<pair<int,int>>p;
	rep(i,n){
		cin>>a[i];
		summ.add(i,a[i]);
		cnt.add(i,1);
		p.pb({a[i],i});
	}
	sort(al(p));
	vec<vec<lint>>query;
	rep(qq,q){
		int t,l,r,x;
		cin>>t>>l>>r>>x;
		query.pb({x,l-1,r,qq});
	}
	sort(al(query));
	int pt=0;
	vec<lint>ans(q);
	rep(qq,q){
		int L=query[qq][1],R=query[qq][2];
		lint x=query[qq][0];
		int qid=query[qq][3];
		
		while(pt<n && p[pt].fi<=x){
			summ.add(p[pt].se,-p[pt].fi);
			cnt.add(p[pt].se,-1);
			pt++;
		}
		//cerr<<qid<<" "<<L<<" "<<R<<" "<<cnt.sum(L,R)<<endl;
		lint anss=summ.sum(L,R)-x *cnt.sum(L,R);
		ans[qid]=anss;
	}
	rep(i,q)cout<<ans[i]<<endl;
	
}
0