結果
問題 | No.2785 四乗足す四の末尾の0 |
ユーザー | MMRZ |
提出日時 | 2024-06-14 21:59:12 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,306 bytes |
コンパイル時間 | 2,880 ms |
コンパイル使用メモリ | 257,224 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-14 21:59:17 |
合計ジャッジ時間 | 4,951 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
ソースコード
#line 1 "cp_templates/template/template.hpp" # include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; const double pi = acos(-1); template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); } template<class T>constexpr T hinf() { return inf<T>() / 2; } template <typename T_char>T_char TL(T_char cX) { return tolower(cX); } template <typename T_char>T_char TU(T_char cX) { return toupper(cX); } template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; } template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; } int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); }; ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; }; ll MOD(ll x, ll m){return (x%m+m)%m; } ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; } template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>; # define all(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>) # define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>) # define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++) # define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++) # define len(x) ((ll)(x).size()) # define bit(n) (1LL << (n)) # define pb push_back # define exists(c, e) ((c).find(e) != (c).end()) struct INIT{ INIT(){ std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(20); } }INIT; namespace mmrz { void solve(); } int main(){ mmrz::solve(); } #line 2 "2785.cpp" // #include "./cp_templates/template/debug.hpp" // #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) // #define debug(...) (static_cast<void>(0)) using namespace mmrz; __int128_t power(__int128_t n, __int128_t k, __int128_t m) { n %= m; __int128_t ret = 1; while(k > 0){ if(k & 1)ret = ret * n % m; n = __int128_t(n) * n % m; k >>= 1; } return ret % m; } bool is_prime(int64_t n){ if(n <= 1)return false; if(n == 2 || n == 3 || n == 5)return true; if(n % 2 == 0)return false; if(n % 3 == 0)return false; if(n % 5 == 0)return false; vector<int64_t> A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; int64_t s = 0, d = n - 1; while(d % 2 == 0){ s++; d >>= 1; } for (auto a : A){ if(a % n == 0)return true; int64_t t, x = power(a, d, n); if(x != 1){ for(t = 0;t < s;t++){ if(x == n - 1)break; x = __int128_t(x) * x % n; } if(t == s)return false; } } return true; } int64_t rho(int64_t n){ if(n % 2 == 0)return 2; if(is_prime(n))return n; auto f = [&](int64_t x) -> int64_t { return (__int128_t(x) * x + 13) % n; }; int64_t step = 0; while (true) { ++step; int64_t x = step, y = f(x); while (true) { int64_t p = gcd(y - x + n, n); if (p == 0 || p == n) break; if (p != 1) return p; x = f(x); y = f(f(y)); } } } vector<int64_t> factorize(int64_t x){ if(x == 1)return {}; int64_t p = rho(x); if(p == x) return {p}; vector<int64_t> l = factorize(p); vector<int64_t> r = factorize(x / p); l.insert(l.end(), r.begin(), r.end()); sort(l.begin(), l.end()); return l; } void SOLVE(){ ll n; cin >> n; n = abs(n); bool FACTO = (n <= 100); n = n*n*n*n + 4; if(FACTO){ auto ret = factorize(n); cout << (len(ret) > 1 ? "Yes" : "No") << endl; } else { cout << (n == 1 ? "Yes" : "No") << endl; } int cnt = 0; while(n % 10 == 0){ cnt++; n /= 10; } cout << cnt << endl; } void mmrz::solve(){ int t = 1; cin >> t; while(t--)SOLVE(); }