結果
問題 | No.2785 四乗足す四の末尾の0 |
ユーザー |
|
提出日時 | 2024-06-17 23:42:22 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 276 ms / 2,000 ms |
コード長 | 4,137 bytes |
コンパイル時間 | 6,730 ms |
コンパイル使用メモリ | 337,596 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-17 23:42:33 |
合計ジャッジ時間 | 9,862 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 20 |
ソースコード
#include <bits/stdc++.h>#include <atcoder/all>using namespace std;using namespace atcoder;istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; }ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); }istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; }ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); }istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; }ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); }typedef long long ll;typedef vector<vector<int>> Graph;typedef pair<int, int> pii;typedef pair<ll, ll> pll;#define FOR(i,l,r) for (int i = l;i < (int)(r); i++)#define rep(i,n) for (int i = 0;i < (int)(n); i++)#define all(x) x.begin(), x.end()#define rall(x) x.rbegin(), x.rend()#define my_sort(x) sort(x.begin(), x.end())#define my_max(x) *max_element(all(x))#define my_min(x) *min_element(all(x))template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }const int INF = (1<<30) - 1;const ll LINF = (1LL<<62) - 1;const int MOD = 998244353;const int MOD2 = 1e9+7;const double PI = acos(-1);vector<int> di = {1,0,-1,0};vector<int> dj = {0,1,0,-1};#ifdef LOCAL# include <debug_print.hpp># define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)#else# define debug(...) (static_cast<void>(0))#endif// https://algo-method.com/tasks/553/editorial// Miller-Rabin 素数判定法template<class T> T pow_mod(T A, T N, T M) {T res = 1 % M;A %= M;while (N) {if (N & 1) res = (res * A) % M;A = (A * A) % M;N >>= 1;}return res;}bool is_prime(long long N) {if (N <= 1) return false;if (N == 2 || N == 3) return true;if (N % 2 == 0) return false;vector<long long> A = {2, 325, 9375, 28178, 450775,9780504, 1795265022};long long s = 0, d = N - 1;while (d % 2 == 0) {++s;d >>= 1;}for (auto a : A) {if (a % N == 0) return true;long long t, x = pow_mod<__int128_t>(a, d, N);if (x != 1) {for (t = 0; t < s; ++t) {if (x == N - 1) break;x = __int128_t(x) * x % N;}if (t == s) return false;}}return true;}// Pollard のロー法long long gcd(long long A, long long B) {A = abs(A), B = abs(B);if (B == 0) return A;else return gcd(B, A % B);}long long pollard(long long N) {if (N % 2 == 0) return 2;if (is_prime(N)) return N;auto f = [&](long long x) -> long long {return (__int128_t(x) * x + 1) % N;};long long step = 0;while (true) {++step;long long x = step, y = f(x);while (true) {long long p = gcd(y - x + N, N);if (p == 0 || p == N) break;if (p != 1) return p;x = f(x);y = f(f(y));}}}vector<long long> prime_factorize(long long N) {if (N == 1) return {};long long p = pollard(N);if (p == N) return {p};vector<long long> left = prime_factorize(p);vector<long long> right = prime_factorize(N / p);left.insert(left.end(), right.begin(), right.end());sort(left.begin(), left.end());return left;}int main(){cin.tie(0);ios_base::sync_with_stdio(false);int T; cin >> T;while(T--){int N; cin >> N;if(N == 1 || N == -1){cout << "Yes" << endl;}else{cout << "No" << endl;}N %= 100;int V = N * N * N * N + 4;int c2 = 0;int x = V;while(x % 2 == 0){x /= 2;c2++;}int c5 = 0;x = V;while(x % 5 == 0){x /= 5;c5++;}cout << min(c2, c5) << endl;}}