結果
問題 | No.2437 Fragile Multiples of 11 |
ユーザー |
|
提出日時 | 2024-06-20 14:40:26 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 77 ms / 2,000 ms |
コード長 | 3,365 bytes |
コンパイル時間 | 472 ms |
コンパイル使用メモリ | 82,096 KB |
実行使用メモリ | 75,152 KB |
最終ジャッジ日時 | 2024-06-20 14:40:30 |
合計ジャッジ時間 | 4,426 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 34 |
ソースコード
import sys input = lambda :sys.stdin.readline()[:-1] ni = lambda :int(input()) na = lambda :list(map(int,input().split())) yes = lambda :print("yes");Yes = lambda :print("Yes");YES = lambda : print("YES") no = lambda :print("no");No = lambda :print("No");NO = lambda : print("NO") ####################################################################### n = ni() X = [int(x) for x in input()] m = 11 mod = 998244353 def solve(n, X): dp = [[0 for i in range(4)] for i in range(m)] dp[0][0] = 1 for i in range(n): ndp = [[0 for i in range(4)] for i in range(m)] ndp, dp = dp, ndp for j in range(m): for k in range(4): p, q = k//2, k%2 if ndp[j][k] == 0:continue for x in range(10): np = p nq = q xj = x if (n-i-1) % 2 else (-x)%m nj = (j + xj)%m if (xj+j * 2)%m == 0 and p:continue if x != 0: np = 1 if q == 0 and x > X[i]: continue if x < X[i]: nq = 1 nk = np*2 + nq dp[nj][nk] += ndp[j][k] dp[nj][nk] %= mod return (dp[0][2]+dp[0][3])%mod e0 = set() e1 = {0} def f(s, x): return set([y * 10 + x for y in s]) def merge(s1, s2): return s1 | s2 def solve_greedy(n, X): dp = [[e0 for i in range(4)] for i in range(m)] dp[0][0] = e1 for i in range(n): ndp = [[set() for i in range(4)] for i in range(m)] ndp, dp = dp, ndp for j in range(m): for k in range(4): p, q = k//2, k%2 if len(ndp[j][k]) == 0:continue for x in range(10): np = p nq = q xj = x if (n-i-1) % 2 else (-x)%m nj = (j + xj)%m if (xj+j * 2)%m == 0 and p:continue if x != 0: np = 1 if q == 0 and x > X[i]: continue if x < X[i]: nq = 1 nk = np*2 + nq dp[nj][nk] = merge(dp[nj][nk], f(ndp[j][k], x)) #print(dp) return dp[0] def solve2(n, X): dp = [[0 for i in range(4)] for i in range(m)] dp[0][0] = 1 for i in range(n): ndp = [[0 for i in range(4)] for i in range(m)] ndp, dp = dp, ndp #print(ndp) for j in range(m): for k in range(4): p, q = k//2, k%2 if ndp[j][k] == 0:continue for x in range(10): np = p nq = q xj = x if (n-i) % 2 else (-x)%m nj = (j + xj)%m if x != 0: np = 1 if q == 0 and x > X[i]: continue if x < X[i]: nq = 1 nk = np*2 + nq #print((j,p,q),(nj, np,nq)) dp[nj][nk] += ndp[j][k] dp[nj][nk] %= mod return (dp[0][2]+dp[0][3])%mod print(solve(n, X)) #print(solve_greedy(n, X)) #print(solve2(n, X))