結果

問題 No.2790 Athena 3
ユーザー AerenAeren
提出日時 2024-06-21 21:25:53
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 8,644 bytes
コンパイル時間 2,696 ms
コンパイル使用メモリ 251,748 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-21 21:25:56
合計ジャッジ時間 3,366 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// #include <bits/allocator.h> // Temp fix for gcc13 global pragma
// #pragma GCC target("avx2,bmi2,popcnt,lzcnt")
// #pragma GCC optimize("O3,unroll-loops")
#include <bits/stdc++.h>
// #include <x86intrin.h>
using namespace std;
#if __cplusplus >= 202002L
using namespace numbers;
#endif
template<class T>
struct point{
T x{}, y{};
point(){ }
template<class U> point(const point<U> &otr): x(otr.x), y(otr.y){ }
template<class U, class V> point(U x, V y): x(x), y(y){ }
template<class U> point(const array<U, 2> &p): x(p[0]), y(p[1]){ }
friend istream &operator>>(istream &in, point &p){
return in >> p.x >> p.y;
}
friend ostream &operator<<(ostream &out, const point &p){
return out << "{" << p.x << ", " << p.y << "}";
}
template<class U> operator array<U, 2>() const{
return {x, y};
}
T operator*(const point &otr) const{
return x * otr.x + y * otr.y;
}
T operator^(const point &otr) const{
return x * otr.y - y * otr.x;
}
point operator+(const point &otr) const{
return {x + otr.x, y + otr.y};
}
point &operator+=(const point &otr){
return *this = *this + otr;
}
point operator-(const point &otr) const{
return {x - otr.x, y - otr.y};
}
point &operator-=(const point &otr){
return *this = *this - otr;
}
point operator-() const{
return {-x, -y};
}
#define scalarop_l(op) friend point operator op(const T &c, const point &p){ return {c op p.x, c op p.y}; }
scalarop_l(+) scalarop_l(-) scalarop_l(*) scalarop_l(/)
#define scalarop_r(op) point operator op(const T &c) const{ return {x op c, y op c}; }
scalarop_r(+) scalarop_r(-) scalarop_r(*) scalarop_r(/)
#define scalarapply(applyop, op) point &operator applyop(const T &c){ return *this = *this op c; }
scalarapply(+=, +) scalarapply(-=, -) scalarapply(*=, *) scalarapply(/=, /)
#define compareop(op) bool operator op(const point &otr) const{ return pair<T, T>(x, y) op pair<T, T>(otr.x, otr.y); }
compareop(>) compareop(<) compareop(>=) compareop(<=) compareop(==) compareop(!=)
#undef scalarop_l
#undef scalarop_r
#undef scalarapply
#undef compareop
double norm() const{
return sqrt(x * x + y * y);
}
long double norm_l() const{
return sqrtl(x * x + y * y);
}
T squared_norm() const{
return x * x + y * y;
}
// [0, 2 * pi]
double angle() const{
auto a = atan2(y, x);
if(a < 0) a += 2 * acos(-1);
return a;
}
// [0, 2 * pi]
long double angle_l() const{
auto a = atan2(y, x);
if(a < 0) a += 2 * acosl(-1);
return a;
}
point<double> unit() const{
return point<double>(x, y) / norm();
}
point<long double> unit_l() const{
return point<long double>(x, y) / norm_l();
}
point perp() const{
return {-y, x};
}
point<double> normal() const{
return perp().unit();
}
point<long double> normal_l() const{
return perp().unit_l();
}
point<double> rotate(double theta) const{
return {x * cos(theta) - y * sin(theta), x * sin(theta) + y * cos(theta)};
}
point<long double> rotate_l(double theta) const{
return {x * cosl(theta) - y * sinl(theta), x * sinl(theta) + y * cosl(theta)};
}
point reflect_x() const{
return {x, -y};
}
point reflect_y() const{
return {-x, y};
}
point reflect(const point &o = {}) const{
return {2 * o.x - x, 2 * o.y - y};
}
bool parallel_to(const point &q) const{
if constexpr(is_floating_point_v<T>) return abs(*this ^ q) <= 1e-9;
else return abs(*this ^ q) == 0;
}
};
template<class T, class U>
point<double> lerp(const point<T> &p, const point<U> &q, double t){
return point<double>(p) * (1 - t) + point<double>(q) * t;
}
template<class T, class U>
point<long double> lerp_l(const point<T> &p, const point<U> &q, long double t){
return point<long double>(p) * (1 - t) + point<long double>(q) * t;
}
template<class T>
double distance(const point<T> &p, const point<T> &q){
return (p - q).norm();
}
template<class T>
long double distance_l(const point<T> &p, const point<T> &q){
return (p - q).norm_l();
}
template<class T>
T squared_distance(const point<T> &p, const point<T> &q){
return (p - q).squared_norm();
}
template<class T>
T doubled_signed_area(const point<T> &p, const point<T> &q, const point<T> &r){
return q - p ^ r - p;
}
template<class T>
T doubled_signed_area(const vector<point<T>> &a){
if(a.empty()) return 0;
T res = a.back() ^ a.front();
for(auto i = 1; i < (int)a.size(); ++ i) res += a[i - 1] ^ a[i];
return res;
}
// [-pi, pi]
template<class T>
double angle(const point<T> &p, const point<T> &q){
return atan2(p ^ q, p * q);
}
// [-pi, pi]
template<class T>
long double angle_l(const point<T> &p, const point<T> &q){
return atan2l(p ^ q, p * q);
}
// Check if p->q->r is sorted by angle with respect to the origin
template<class T>
bool is_sorted_by_angle(const point<T> &origin, const point<T> &p, const point<T> &q, const point<T> &r){
T x = p - origin ^ q - origin;
T y = q - origin ^ r - origin;
if(x >= 0 && y >= 0) return true;
if(x < 0 && y < 0) return false;
return (p - origin ^ r - origin) < 0;
}
// Check if a is sorted by angle with respect to the origin
template<class T>
bool is_sorted_by_angle(const point<T> &origin, const vector<point<T>> &a){
for(auto i = 0; i < (int)a.size() - 2; ++ i) if(!is_sorted_by_angle(origin, a[i], a[i + 1], a[i + 2])) return false;
return true;
}
template<class T>
bool counterclockwise(const point<T> &p, const point<T> &q, const point<T> &r){
return doubled_signed_area(p, q, r) > 0;
}
template<class T>
bool clockwise(const point<T> &p, const point<T> &q, const point<T> &r){
return doubled_signed_area(p, q, r) < 0;
}
template<class T>
bool colinear(const point<T> &p, const point<T> &q, const point<T> &r){
return doubled_signed_area(p, q, r) == 0;
}
template<class T>
bool colinear(const vector<point<T>> &a){
int i = 1;
while(i < (int)a.size() && a[0] == a[i]) ++ i;
if(i == (int)a.size()) return true;
for(auto j = i + 1; j < (int)a.size(); ++ j) if(!colinear(a[0], a[i], a[j])) return false;
return true;
}
point<double> polar(double x, double theta){
assert(x >= 0);
return {x * cos(theta), x * sin(theta)};
}
point<long double> polar_l(long double x, long double theta){
assert(x >= 0);
return {x * cosl(theta), x * sinl(theta)};
}
// T must be able to hold the fourth power of max coordinate
// returns [a, b, c, and d lies in a circle]
template<class T>
bool concircular(point<T> a, point<T> b, point<T> c, const point<T> &d){
a -= d, b -= d, c -= d;
return a.squared_norm() * (b ^ c) + b.squared_norm() * (c ^ a) + c.squared_norm() * (a ^ b) == 0;
}
// T must be able to hold the fourth power of max coordinate
// returns [d lies in the interior of the circle defined by a, b, c]
template<class T>
bool inside_of_circle(point<T> a, point<T> b, point<T> c, const point<T> &d){
a -= d, b -= d, c -= d;
return (a.squared_norm() * (b ^ c) + b.squared_norm() * (c ^ a) + c.squared_norm() * (a ^ b)) * (doubled_signed_area(a, b, c) > 0 ? 1 : -1) > 0;
}
// T must be able to hold the fourth power of max coordinate
// returns [d lies in the exterior of the circle defined by a, b, c]
template<class T>
bool outside_of_circle(point<T> a, point<T> b, point<T> c, const point<T> &d){
a -= d, b -= d, c -= d;
return (a.squared_norm() * (b ^ c) + b.squared_norm() * (c ^ a) + c.squared_norm() * (a ^ b)) * (doubled_signed_area(a, b, c) > 0 ? -1 : 1) > 0;
}
using pointint = point<int>;
using pointll = point<long long>;
using pointlll = point<__int128_t>;
using pointd = point<double>;
using pointld = point<long double>;
namespace direction_vectors{
vector<array<int, 2>> dr2{{1, 0}, {0, 1}};
vector<array<int, 2>> dr4{{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
vector<array<int, 2>> dr4diag{{1, 1}, {-1, 1}, {-1, -1}, {1, -1}};
vector<array<int, 2>> dr8{{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};
vector<array<int, 2>> drk{{2, 1}, {1, 2}, {-1, 2}, {-2, 1}, {-2, -1}, {-1, -2}, {1, -2}, {2, -1}};
vector<array<int, 2>> generate(int low, int high){
assert(0 <= low && low <= high);
int th = sqrt(high) + 1;
vector<array<int, 2>> dr;
for(auto x = -th; x <= th; ++ x) for(auto y = -th; y <= th; ++ y) if(auto d = x * x + y * y; low <= d && d <= high) dr.push_back({x, y});
return dr;
}
}
int main(){
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(ios::badbit | ios::failbit);
cout << fixed << setprecision(15);
auto dr = direction_vectors::dr4;
pointint a, b, c;
cin >> a >> b >> c;
int res = 0;
for(auto [dx, dy]: dr){
pointint p{a.x + dx, a.y + dy};
for(auto [dx, dy]: dr){
pointint q{b.x + dx, b.y + dy};
for(auto [dx, dy]: dr){
pointint r{c.x + dx, c.y + dy};
res = max(res, abs(doubled_signed_area(p, q, r)));
}
}
}
cout << res / 2.0 << "\n";
return 0;
}
/*
*/
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0