結果
問題 | No.2790 Athena 3 |
ユーザー |
|
提出日時 | 2024-06-21 21:25:53 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 8,644 bytes |
コンパイル時間 | 2,696 ms |
コンパイル使用メモリ | 251,748 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-21 21:25:56 |
合計ジャッジ時間 | 3,366 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 14 |
ソースコード
// #include <bits/allocator.h> // Temp fix for gcc13 global pragma// #pragma GCC target("avx2,bmi2,popcnt,lzcnt")// #pragma GCC optimize("O3,unroll-loops")#include <bits/stdc++.h>// #include <x86intrin.h>using namespace std;#if __cplusplus >= 202002Lusing namespace numbers;#endiftemplate<class T>struct point{T x{}, y{};point(){ }template<class U> point(const point<U> &otr): x(otr.x), y(otr.y){ }template<class U, class V> point(U x, V y): x(x), y(y){ }template<class U> point(const array<U, 2> &p): x(p[0]), y(p[1]){ }friend istream &operator>>(istream &in, point &p){return in >> p.x >> p.y;}friend ostream &operator<<(ostream &out, const point &p){return out << "{" << p.x << ", " << p.y << "}";}template<class U> operator array<U, 2>() const{return {x, y};}T operator*(const point &otr) const{return x * otr.x + y * otr.y;}T operator^(const point &otr) const{return x * otr.y - y * otr.x;}point operator+(const point &otr) const{return {x + otr.x, y + otr.y};}point &operator+=(const point &otr){return *this = *this + otr;}point operator-(const point &otr) const{return {x - otr.x, y - otr.y};}point &operator-=(const point &otr){return *this = *this - otr;}point operator-() const{return {-x, -y};}#define scalarop_l(op) friend point operator op(const T &c, const point &p){ return {c op p.x, c op p.y}; }scalarop_l(+) scalarop_l(-) scalarop_l(*) scalarop_l(/)#define scalarop_r(op) point operator op(const T &c) const{ return {x op c, y op c}; }scalarop_r(+) scalarop_r(-) scalarop_r(*) scalarop_r(/)#define scalarapply(applyop, op) point &operator applyop(const T &c){ return *this = *this op c; }scalarapply(+=, +) scalarapply(-=, -) scalarapply(*=, *) scalarapply(/=, /)#define compareop(op) bool operator op(const point &otr) const{ return pair<T, T>(x, y) op pair<T, T>(otr.x, otr.y); }compareop(>) compareop(<) compareop(>=) compareop(<=) compareop(==) compareop(!=)#undef scalarop_l#undef scalarop_r#undef scalarapply#undef compareopdouble norm() const{return sqrt(x * x + y * y);}long double norm_l() const{return sqrtl(x * x + y * y);}T squared_norm() const{return x * x + y * y;}// [0, 2 * pi]double angle() const{auto a = atan2(y, x);if(a < 0) a += 2 * acos(-1);return a;}// [0, 2 * pi]long double angle_l() const{auto a = atan2(y, x);if(a < 0) a += 2 * acosl(-1);return a;}point<double> unit() const{return point<double>(x, y) / norm();}point<long double> unit_l() const{return point<long double>(x, y) / norm_l();}point perp() const{return {-y, x};}point<double> normal() const{return perp().unit();}point<long double> normal_l() const{return perp().unit_l();}point<double> rotate(double theta) const{return {x * cos(theta) - y * sin(theta), x * sin(theta) + y * cos(theta)};}point<long double> rotate_l(double theta) const{return {x * cosl(theta) - y * sinl(theta), x * sinl(theta) + y * cosl(theta)};}point reflect_x() const{return {x, -y};}point reflect_y() const{return {-x, y};}point reflect(const point &o = {}) const{return {2 * o.x - x, 2 * o.y - y};}bool parallel_to(const point &q) const{if constexpr(is_floating_point_v<T>) return abs(*this ^ q) <= 1e-9;else return abs(*this ^ q) == 0;}};template<class T, class U>point<double> lerp(const point<T> &p, const point<U> &q, double t){return point<double>(p) * (1 - t) + point<double>(q) * t;}template<class T, class U>point<long double> lerp_l(const point<T> &p, const point<U> &q, long double t){return point<long double>(p) * (1 - t) + point<long double>(q) * t;}template<class T>double distance(const point<T> &p, const point<T> &q){return (p - q).norm();}template<class T>long double distance_l(const point<T> &p, const point<T> &q){return (p - q).norm_l();}template<class T>T squared_distance(const point<T> &p, const point<T> &q){return (p - q).squared_norm();}template<class T>T doubled_signed_area(const point<T> &p, const point<T> &q, const point<T> &r){return q - p ^ r - p;}template<class T>T doubled_signed_area(const vector<point<T>> &a){if(a.empty()) return 0;T res = a.back() ^ a.front();for(auto i = 1; i < (int)a.size(); ++ i) res += a[i - 1] ^ a[i];return res;}// [-pi, pi]template<class T>double angle(const point<T> &p, const point<T> &q){return atan2(p ^ q, p * q);}// [-pi, pi]template<class T>long double angle_l(const point<T> &p, const point<T> &q){return atan2l(p ^ q, p * q);}// Check if p->q->r is sorted by angle with respect to the origintemplate<class T>bool is_sorted_by_angle(const point<T> &origin, const point<T> &p, const point<T> &q, const point<T> &r){T x = p - origin ^ q - origin;T y = q - origin ^ r - origin;if(x >= 0 && y >= 0) return true;if(x < 0 && y < 0) return false;return (p - origin ^ r - origin) < 0;}// Check if a is sorted by angle with respect to the origintemplate<class T>bool is_sorted_by_angle(const point<T> &origin, const vector<point<T>> &a){for(auto i = 0; i < (int)a.size() - 2; ++ i) if(!is_sorted_by_angle(origin, a[i], a[i + 1], a[i + 2])) return false;return true;}template<class T>bool counterclockwise(const point<T> &p, const point<T> &q, const point<T> &r){return doubled_signed_area(p, q, r) > 0;}template<class T>bool clockwise(const point<T> &p, const point<T> &q, const point<T> &r){return doubled_signed_area(p, q, r) < 0;}template<class T>bool colinear(const point<T> &p, const point<T> &q, const point<T> &r){return doubled_signed_area(p, q, r) == 0;}template<class T>bool colinear(const vector<point<T>> &a){int i = 1;while(i < (int)a.size() && a[0] == a[i]) ++ i;if(i == (int)a.size()) return true;for(auto j = i + 1; j < (int)a.size(); ++ j) if(!colinear(a[0], a[i], a[j])) return false;return true;}point<double> polar(double x, double theta){assert(x >= 0);return {x * cos(theta), x * sin(theta)};}point<long double> polar_l(long double x, long double theta){assert(x >= 0);return {x * cosl(theta), x * sinl(theta)};}// T must be able to hold the fourth power of max coordinate// returns [a, b, c, and d lies in a circle]template<class T>bool concircular(point<T> a, point<T> b, point<T> c, const point<T> &d){a -= d, b -= d, c -= d;return a.squared_norm() * (b ^ c) + b.squared_norm() * (c ^ a) + c.squared_norm() * (a ^ b) == 0;}// T must be able to hold the fourth power of max coordinate// returns [d lies in the interior of the circle defined by a, b, c]template<class T>bool inside_of_circle(point<T> a, point<T> b, point<T> c, const point<T> &d){a -= d, b -= d, c -= d;return (a.squared_norm() * (b ^ c) + b.squared_norm() * (c ^ a) + c.squared_norm() * (a ^ b)) * (doubled_signed_area(a, b, c) > 0 ? 1 : -1) > 0;}// T must be able to hold the fourth power of max coordinate// returns [d lies in the exterior of the circle defined by a, b, c]template<class T>bool outside_of_circle(point<T> a, point<T> b, point<T> c, const point<T> &d){a -= d, b -= d, c -= d;return (a.squared_norm() * (b ^ c) + b.squared_norm() * (c ^ a) + c.squared_norm() * (a ^ b)) * (doubled_signed_area(a, b, c) > 0 ? -1 : 1) > 0;}using pointint = point<int>;using pointll = point<long long>;using pointlll = point<__int128_t>;using pointd = point<double>;using pointld = point<long double>;namespace direction_vectors{vector<array<int, 2>> dr2{{1, 0}, {0, 1}};vector<array<int, 2>> dr4{{1, 0}, {0, 1}, {-1, 0}, {0, -1}};vector<array<int, 2>> dr4diag{{1, 1}, {-1, 1}, {-1, -1}, {1, -1}};vector<array<int, 2>> dr8{{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};vector<array<int, 2>> drk{{2, 1}, {1, 2}, {-1, 2}, {-2, 1}, {-2, -1}, {-1, -2}, {1, -2}, {2, -1}};vector<array<int, 2>> generate(int low, int high){assert(0 <= low && low <= high);int th = sqrt(high) + 1;vector<array<int, 2>> dr;for(auto x = -th; x <= th; ++ x) for(auto y = -th; y <= th; ++ y) if(auto d = x * x + y * y; low <= d && d <= high) dr.push_back({x, y});return dr;}}int main(){cin.tie(0)->sync_with_stdio(0);cin.exceptions(ios::badbit | ios::failbit);cout << fixed << setprecision(15);auto dr = direction_vectors::dr4;pointint a, b, c;cin >> a >> b >> c;int res = 0;for(auto [dx, dy]: dr){pointint p{a.x + dx, a.y + dy};for(auto [dx, dy]: dr){pointint q{b.x + dx, b.y + dy};for(auto [dx, dy]: dr){pointint r{c.x + dx, c.y + dy};res = max(res, abs(doubled_signed_area(p, q, r)));}}}cout << res / 2.0 << "\n";return 0;}/**/