結果

問題 No.2790 Athena 3
ユーザー dyktr_06dyktr_06
提出日時 2024-06-21 21:30:34
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 14,026 bytes
コンパイル時間 3,397 ms
コンパイル使用メモリ 240,516 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-21 21:30:39
合計ジャッジ時間 3,497 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 WA -
testcase_09 AC 1 ms
6,940 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 WA -
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 AC 2 ms
6,944 KB
testcase_16 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(n) for(int i = 0; i < (int)(n); ++i)
#define rep2(i, n) for(int i = 0; i < (int)(n); ++i)
#define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i)
#define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i)
#define ALL(a) (a).begin(), (a).end()
#define Sort(a) (sort((a).begin(), (a).end()))
#define RSort(a) (sort((a).rbegin(), (a).rend()))
#define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end()))
typedef long long int ll;
typedef unsigned long long ul;
typedef long double ld;
typedef vector<int> vi;
typedef vector<long long> vll;
typedef vector<char> vc;
typedef vector<string> vst;
typedef vector<double> vd;
typedef vector<long double> vld;
typedef pair<long long, long long> P;
template<class T> long long sum(const T& a){ return accumulate(a.begin(), a.end(), 0LL); }
template<class T> auto min(const T& a){ return *min_element(a.begin(), a.end()); }
template<class T> auto max(const T& a){ return *max_element(a.begin(), a.end()); }
const long long MINF = 0x7fffffffffff;
const long long INF = 0x1fffffffffffffff;
const long long MOD = 998244353;
const long double EPS = 1e-9;
const long double PI = acos(-1);
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return
    os; }
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v
    .size() ? " " : ""); } return os; }
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " ";
    } return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int)st.size(); ++i){ os << *itr
    << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int)st.size(); ++i){ os <<
    *itr << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; }
template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; }
template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; }
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os
    << pq.top() << " "; pq.pop(); } return os; }
template<class T, class U> inline T vin(T& vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; }
template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; }
template<class... T> void in(T&... a){ (cin >> ... >> a); }
void out(){ cout << '\n'; }
template<class T, class... Ts> void out(const T& a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template<class T, class U> void inGraph(vector<vector<T>>& G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b;
    cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } }
void input(){
}
namespace Geometry{
using T = long long;
const T INFT = 9e18;
inline constexpr int type(T x, T y){
if(!x && !y) return 0;
if(y < 0 || (y == 0 && x > 0)) return -1;
return 1;
}
T absT(T x){
if(x < 0) return -x;
return x;
}
struct Point{
T x, y;
Point(T X = 0, T Y = 0) : x(X), y(Y){}
inline bool operator==(const Point &other) const {
return ((x == other.x) && (y == other.y));
}
inline bool operator!=(const Point &other) const {
return ((x != other.x) || (y != other.y));
}
inline bool operator<(const Point &other) const {
int L = type(x, y), R = type(other.x, other.y);
if(L != R) return L < R;
if(x * other.y == other.x * y) return abs(x + y) < abs(other.x + other.y);
return x * other.y > other.x * y;
}
inline bool operator>(const Point &other) const {
int L = type(x, y), R = type(other.x, other.y);
if(L != R) return L > R;
if(x * other.y == other.x * y) return abs(x + y) > abs(other.x + other.y);
return x * other.y < other.x * y;
}
inline Point operator+() const noexcept { return *this; }
inline Point operator-() const noexcept { return Point(-x, -y); }
inline Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); }
inline Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); }
inline Point &operator+=(const Point &p) { return x += p.x, y += p.y, *this; }
inline Point &operator-=(const Point &p) { return x -= p.x, y -= p.y, *this; }
inline T operator*(const Point &p) const { return x * p.x + y * p.y; }
inline Point &operator*=(const T &k) { return x *= k, y *= k, *this; }
inline Point operator*(const T &k) { return (*this *= k); }
// floor
inline Point &operator/=(const T &k) { return x /= k, y /= k, *this; }
inline Point operator/(const T &k) { return (*this /= k); }
friend inline istream &operator>>(istream &is, Point &p) noexcept {
is >> p.x >> p.y;
return is;
}
friend inline ostream &operator<<(ostream &os, const Point &p) noexcept { return os << p.x << " " << p.y; }
};
bool angle_equal(const Point &p, const Point &q){
int L = type(p.x, p.y), R = type(q.x, q.y);
if(L != R) return false;
return p.x * q.y == q.x * p.y;
}
long double rad2deg(long double rad){
return rad * (long double) 180 / acos(-1);
}
long double deg2rad(long double deg){
return deg * acosl(-1) / (long double) 180;
}
Point rotate(Point &p, long double deg){
complex<T> comp(p.x, p.y);
comp *= exp(complex<T>(.0, deg2rad(deg)));
return Point(comp.real(), comp.imag());
}
T cross(const Point &p, const Point &q){
return p.x * q.y - p.y * q.x;
}
T dot(const Point &p, const Point &q){
return p.x * q.x + p.y * q.y;
}
T manhattanDist(const Point &p, const Point &q){
return absT(p.x - q.x) + absT(p.y - q.y);
}
// 2
T dist(const Point &p, const Point &q){
return (p.x - q.x) * (p.x - q.x) + (p.y - q.y) * (p.y - q.y);
}
// 2
T polygonArea(vector<Point> points){
const int n = points.size();
if(n <= 2) return T(0);
sort(points.begin(), points.end(), [](Point p, Point q){
return (p.x != q.x ? p.x < q.x : p.y < q.y);
});
T res = 0;
for(int i = 0; i < n - 1; i++){
res += cross(points[i], points[i + 1]);
}
res += cross(points[n - 1], points[0]);
return res;
}
vector<Point> convexHull(vector<Point> points){
vector<Point> U, L, res;
sort(points.begin(), points.end(), [](Point p, Point q){
return (p.x != q.x ? p.x < q.x : p.y < q.y);
});
points.erase(unique(points.begin(), points.end()), points.end());
const int n = points.size();
if((int) points.size() <= 2){
return points;
}
// lower
for(int i = 0; i < n; i++){
int j = L.size();
//
while(j >= 2 && cross(L[j - 1] - L[j - 2], points[i] - L[j - 2]) <= 0){
L.pop_back();
j--;
}
L.push_back(points[i]);
}
// upper
for(int i = n - 1; i >= 0; i--){
int j = U.size();
while(j >= 2 && cross(U[j - 1] - U[j - 2], points[i] - U[j - 2]) <= 0){
U.pop_back();
j--;
}
U.push_back(points[i]);
}
res = L;
for(int i = 1; i < (int) U.size() - 1; i++){
res.push_back(U[i]);
}
return res;
}
// : 0, : 1, : 2
int inCcwConvex(Point p, const vector<Point> &points) {
const int n = points.size();
T cr1 = cross(points[1] - points[0], p - points[0]);
T cr2 = cross(points[n - 1] - points[0], p - points[0]);
if(cr1 < 0 || 0 < cr2){
return 0;
}
int l = 1, r = n - 1;
while(abs(r - l) > 1){
int mid = (l + r) / 2;
if(cross(p - points[0], points[mid] - points[0]) >= 0){
r = mid;
} else{
l = mid;
}
}
T cr = cross(points[l] - p, points[r] - p);
if(cr == 0){
return 2;
} else if(cr > 0){
if(cr1 == 0 || cr2 == 0){
return 2;
} else{
return 1;
}
} else{
return 0;
}
}
pair<T, pair<int, int>> closestPair(vector<Point> &points){
const int n = points.size();
assert(n >= 2);
vector<pair<Point, int>> sortp(n);
for(int i = 0; i < n; i++){
sortp[i] = {points[i], i};
}
sort(sortp.begin(), sortp.end(), [](pair<Point, int> p, pair<Point, int> q){
return (p.first.x != q.first.x ? p.first.x < q.first.x : p.first.y < q.first.y);
});
int ans1 = -1, ans2 = -1;
T min_dist = INFT;
auto dfs = [&](auto &self, int l, int r) -> T {
if(r - l <= 1){
return INFT;
}
int mid = (l + r) / 2;
T d = min(self(self, l, mid), self(self, mid, r));
vector<pair<Point, int>> tmp;
for(int i = l; i < r; i++){
T dx = sortp[mid].first.x - sortp[i].first.x;
if(dx * dx < d){
tmp.push_back(sortp[i]);
}
}
sort(tmp.begin(), tmp.end(), [](pair<Point, int> p, pair<Point, int> q){
return p.first.y < q.first.y;
});
for(int i = 0; i < (int) tmp.size(); i++){
for(int j = i + 1; j < (int) tmp.size(); j++){
T dy = tmp[j].first.y - tmp[i].first.y;
if(dy * dy >= d){
break;
}
T td = dist(tmp[i].first, tmp[j].first);
if(td < d){
d = td;
if(d < min_dist){
min_dist = d;
ans1 = tmp[i].second;
ans2 = tmp[j].second;
}
}
}
}
return d;
};
dfs(dfs, 0, n);
return {min_dist, {ans1, ans2}};
}
pair<T, pair<int, int>> furthestPair(vector<Point> &points){
const int n = points.size();
assert(n >= 2);
vector<Point> convex = convexHull(points);
const int m = convex.size();
map<pair<T, T>, int> mp;
for(int i = 0; i < n; i++){
mp[{points[i].x, points[i].y}] = i;
}
vector<int> idx(m);
for(int i = 0; i < m; i++){
idx[i] = mp[{convex[i].x, convex[i].y}];
}
if(m == 1){
return {dist(points[0], points[1]), {0, 1}};
}else if(m == 2){
return {dist(convex[0], convex[1]), {idx[0], idx[1]}};
}
auto compare = [](Point p, Point q){
return p.x != q.x ? p.x < q.x : p.y < q.y;
};
int i = 0, j = 0;
for(int k = 0; k < m; k++){
if(compare(convex[k], convex[i])) i = k;
if(compare(convex[j], convex[k])) j = k;
}
int i0 = i, j0 = j;
T max_dist = 0;
int ans1 = -1, ans2 = -1;
while(i != j0 || j != i0){
T d = dist(convex[i], convex[j]);
if(d > max_dist){
max_dist = d;
ans1 = idx[i];
ans2 = idx[j];
}
if(cross(convex[(i + 1) % m] - convex[i], convex[(j + 1) % m] - convex[j]) < 0){
i = (i + 1) % m;
}else{
j = (j + 1) % m;
}
}
return {max_dist, {ans1, ans2}};
}
}
using namespace Geometry;
vll dx = {1, 0, -1, 0};
vll dy = {0, 1, 0, -1};
void solve(){
vector<Point> points(3);
rep(i, 3) in(points[i]);
ll mx = 0;
rep(dir1, 4){
rep(dir2, 4){
rep(dir3, 4){
Point p1 = points[0] + Point(dx[dir1], dy[dir1]);
Point p2 = points[1] + Point(dx[dir2], dy[dir2]);
Point p3 = points[2] + Point(dx[dir3], dy[dir3]);
vector<Point> p = {p1, p2, p3};
chmax(mx, polygonArea(p));
}
}
}
ld ans = mx;
ans /= 2;
out(ans);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(20);
input();
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0