結果
問題 | No.2791 Beginner Contest |
ユーザー | k1suxu |
提出日時 | 2024-06-21 22:22:59 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 45,935 bytes |
コンパイル時間 | 8,502 ms |
コンパイル使用メモリ | 350,664 KB |
実行使用メモリ | 20,176 KB |
最終ジャッジ日時 | 2024-06-21 22:23:22 |
合計ジャッジ時間 | 20,384 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 486 ms
7,964 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 1,016 ms
12,812 KB |
testcase_07 | AC | 161 ms
6,940 KB |
testcase_08 | AC | 218 ms
6,944 KB |
testcase_09 | AC | 1,741 ms
16,440 KB |
testcase_10 | TLE | - |
testcase_11 | AC | 648 ms
17,536 KB |
testcase_12 | TLE | - |
testcase_13 | AC | 546 ms
12,480 KB |
testcase_14 | AC | 158 ms
6,944 KB |
testcase_15 | AC | 767 ms
17,388 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 719 ms
19,964 KB |
testcase_19 | AC | 641 ms
17,644 KB |
ソースコード
#pragma GCC target("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; #define rep(i,n) for(int i = 0; i < (int)n; i++) #define FOR(n) for(int i = 0; i < (int)n; i++) #define repi(i,a,b) for(int i = (int)a; i < (int)b; i++) #define all(x) x.begin(),x.end() //#define mp make_pair #define vi vector<int> #define vvi vector<vi> #define vvvi vector<vvi> #define vvvvi vector<vvvi> #define pii pair<int,int> #define vpii vector<pair<int,int>> template<typename T> bool chmax(T &a, const T b) {if(a<b) {a=b; return true;} else {return false;}} template<typename T> bool chmin(T &a, const T b) {if(a>b) {a=b; return true;} else {return false;}} using ll = long long; using ld = long double; using ull = unsigned long long; const ll INF = numeric_limits<long long>::max() / 2; const ld pi = 3.1415926535897932384626433832795028; const ll mod = 998244353; int dx[] = {1, 0, -1, 0, -1, -1, 1, 1}; int dy[] = {0, 1, 0, -1, -1, 1, -1, 1}; #define int long long #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal namespace internal { template <class mint, int g = internal::primitive_root<mint::mod()>, internal::is_static_modint_t<mint>* = nullptr> struct fft_info { static constexpr int rank2 = bsf_constexpr(mint::mod() - 1); std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1 std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1 std::array<mint, std::max(0LL, rank2 - 2 + 1)> rate2; std::array<mint, std::max(0LL, rank2 - 2 + 1)> irate2; std::array<mint, std::max(0LL, rank2 - 3 + 1)> rate3; std::array<mint, std::max(0LL, rank2 - 3 + 1)> irate3; fft_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } }; template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) { int n = (int)(a.size()); int h = internal::ceil_pow2(n); static const fft_info<mint> info; int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if (s + 1 != (1 << len)) rot *= info.rate2[bsf(~(unsigned int)(s))]; } len++; } else { // 4-base int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * mint::mod() * mint::mod(); auto a0 = 1ULL * a[i + offset].val(); auto a1 = 1ULL * a[i + offset + p].val() * rot.val(); auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val(); auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if (s + 1 != (1 << len)) rot *= info.rate3[bsf(~(unsigned int)(s))]; } len += 2; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) { int n = (int)(a.size()); int h = internal::ceil_pow2(n); static const fft_info<mint> info; int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * irot.val(); ; } if (s + 1 != (1 << (len - 1))) irot *= info.irate2[bsf(~(unsigned int)(s))]; } len--; } else { // 4-base int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val(); auto a1 = 1ULL * a[i + offset + 1 * p].val(); auto a2 = 1ULL * a[i + offset + 2 * p].val(); auto a3 = 1ULL * a[i + offset + 3 * p].val(); auto a2na3iimag = 1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val(); a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val(); a[i + offset + 2 * p] = (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val(); a[i + offset + 3 * p] = (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) * irot3.val(); } if (s + 1 != (1 << (len - 2))) irot *= info.irate3[bsf(~(unsigned int)(s))]; } len -= 2; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_naive(const std::vector<mint>& a, const std::vector<mint>& b) { int n = (int)(a.size()), m = (int)(b.size()); std::vector<mint> ans(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { ans[i + j] += a[i] * b[j]; } } } else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } } return ans; } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) { int n = (int)(a.size()), m = (int)(b.size()); int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } } // namespace internal template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) { int n = (int)(a.size()), m = (int)(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(const std::vector<mint>& a, const std::vector<mint>& b) { int n = (int)(a.size()), m = (int)(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) { int n = (int)(a.size()), m = (int)(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) { int n = (int)(a.size()), m = (int)(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; // B = 2^63, -B <= x, r(real value) < B // (x, x - M, x - 2M, or x - 3M) = r (mod 2B) // r = c1[i] (mod MOD1) // focus on MOD1 // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B) // r = x, // x - M' + (0 or 2B), // x - 2M' + (0, 2B or 4B), // x - 3M' + (0, 2B, 4B or 6B) (without mod!) // (r - x) = 0, (0) // - M' + (0 or 2B), (1) // -2M' + (0 or 2B or 4B), (2) // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1) // we checked that // ((1) mod MOD1) mod 5 = 2 // ((2) mod MOD1) mod 5 = 3 // ((3) mod MOD1) mod 5 = 4 long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } //need to include mod_int structure //ref: https://ei1333.github.io/library/math/fft/number-theoretic-transform-friendly-mod-int.hpp template< typename Mint > struct NumberTheoreticTransformFriendlyModInt { static vector< Mint > roots, iroots, rate3, irate3; static int max_base; NumberTheoreticTransformFriendlyModInt() = default; static void init() { if(roots.empty()) { const unsigned mod = Mint::mod(); assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; Mint root = 2; while(root.pow((mod - 1) >> 1) == 1) { root += 1; } assert(root.pow(mod - 1) == 1); roots.resize(max_base + 1); iroots.resize(max_base + 1); rate3.resize(max_base + 1); irate3.resize(max_base + 1); roots[max_base] = root.pow((mod - 1) >> max_base); iroots[max_base] = Mint(1) / roots[max_base]; for(int i = max_base - 1; i >= 0; i--) { roots[i] = roots[i + 1] * roots[i + 1]; iroots[i] = iroots[i + 1] * iroots[i + 1]; } { Mint prod = 1, iprod = 1; for(int i = 0; i <= max_base - 3; i++) { rate3[i] = roots[i + 3] * prod; irate3[i] = iroots[i + 3] * iprod; prod *= iroots[i + 3]; iprod *= roots[i + 3]; } } } } static void ntt(vector< Mint > &a) { init(); const int n = (int) a.size(); assert((n & (n - 1)) == 0); int h = __builtin_ctz(n); assert(h <= max_base); int len = 0; Mint imag = roots[2]; if(h & 1) { int p = 1 << (h - 1); Mint rot = 1; for(int i = 0; i < p; i++) { auto r = a[i + p]; a[i + p] = a[i] - r; a[i] += r; } len++; } for(; len + 1 < h; len += 2) { int p = 1 << (h - len - 2); { // s = 0 for(int i = 0; i < p; i++) { auto a0 = a[i]; auto a1 = a[i + p]; auto a2 = a[i + 2 * p]; auto a3 = a[i + 3 * p]; auto a1na3imag = (a1 - a3) * imag; auto a0a2 = a0 + a2; auto a1a3 = a1 + a3; auto a0na2 = a0 - a2; a[i] = a0a2 + a1a3; a[i + 1 * p] = a0a2 - a1a3; a[i + 2 * p] = a0na2 + a1na3imag; a[i + 3 * p] = a0na2 - a1na3imag; } } Mint rot = rate3[0]; for(int s = 1; s < (1 << len); s++) { int offset = s << (h - len); Mint rot2 = rot * rot; Mint rot3 = rot2 * rot; for(int i = 0; i < p; i++) { auto a0 = a[i + offset]; auto a1 = a[i + offset + p] * rot; auto a2 = a[i + offset + 2 * p] * rot2; auto a3 = a[i + offset + 3 * p] * rot3; auto a1na3imag = (a1 - a3) * imag; auto a0a2 = a0 + a2; auto a1a3 = a1 + a3; auto a0na2 = a0 - a2; a[i + offset] = a0a2 + a1a3; a[i + offset + 1 * p] = a0a2 - a1a3; a[i + offset + 2 * p] = a0na2 + a1na3imag; a[i + offset + 3 * p] = a0na2 - a1na3imag; } rot *= rate3[__builtin_ctz(~s)]; } } } static void intt(vector< Mint > &a, bool f = true) { init(); const int n = (int) a.size(); assert((n & (n - 1)) == 0); int h = __builtin_ctz(n); assert(h <= max_base); int len = h; Mint iimag = iroots[2]; for(; len > 1; len -= 2) { int p = 1 << (h - len); { // s = 0 for(int i = 0; i < p; i++) { auto a0 = a[i]; auto a1 = a[i + 1 * p]; auto a2 = a[i + 2 * p]; auto a3 = a[i + 3 * p]; auto a2na3iimag = (a2 - a3) * iimag; auto a0na1 = a0 - a1; auto a0a1 = a0 + a1; auto a2a3 = a2 + a3; a[i] = a0a1 + a2a3; a[i + 1 * p] = (a0na1 + a2na3iimag); a[i + 2 * p] = (a0a1 - a2a3); a[i + 3 * p] = (a0na1 - a2na3iimag); } } Mint irot = irate3[0]; for(int s = 1; s < (1 << (len - 2)); s++) { int offset = s << (h - len + 2); Mint irot2 = irot * irot; Mint irot3 = irot2 * irot; for(int i = 0; i < p; i++) { auto a0 = a[i + offset]; auto a1 = a[i + offset + 1 * p]; auto a2 = a[i + offset + 2 * p]; auto a3 = a[i + offset + 3 * p]; auto a2na3iimag = (a2 - a3) * iimag; auto a0na1 = a0 - a1; auto a0a1 = a0 + a1; auto a2a3 = a2 + a3; a[i + offset] = a0a1 + a2a3; a[i + offset + 1 * p] = (a0na1 + a2na3iimag) * irot; a[i + offset + 2 * p] = (a0a1 - a2a3) * irot2; a[i + offset + 3 * p] = (a0na1 - a2na3iimag) * irot3; } irot *= irate3[__builtin_ctz(~s)]; } } if(len >= 1) { int p = 1 << (h - 1); for(int i = 0; i < p; i++) { auto ajp = a[i] - a[i + p]; a[i] += a[i + p]; a[i + p] = ajp; } } if(f) { Mint inv_sz = Mint(1) / n; for(int i = 0; i < n; i++) a[i] *= inv_sz; } } static vector< Mint > multiply(vector< Mint > a, vector< Mint > b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); Mint inv_sz = Mint(1) / sz; for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz; intt(a, false); a.resize(need); return a; } }; template< typename Mint > vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::roots = vector< Mint >(); template< typename Mint > vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::iroots = vector< Mint >(); template< typename Mint > vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::rate3 = vector< Mint >(); template< typename Mint > vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::irate3 = vector< Mint >(); template< typename Mint > int NumberTheoreticTransformFriendlyModInt< Mint >::max_base = 0; //ref: https://ei1333.github.io/library/math/fps/formal-power-series-friendly-ntt.hpp template< typename T > struct FormalPowerSeriesFriendlyNTT : vector< T > { using vector< T >::vector; using P = FormalPowerSeriesFriendlyNTT; using NTT = NumberTheoreticTransformFriendlyModInt< T >; // prefix P pre(int deg) const { return P(begin(*this), begin(*this) + min((int) this->size(), deg)); } P rev(int deg = -1) const { P ret(*this); if(deg != -1) ret.resize(deg, T(0)); reverse(begin(ret), end(ret)); return ret; } void shrink() { while(this->size() && this->back() == T(0)) this->pop_back(); } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator-(const P &r) const { return P(*this) -= r; } P operator-(const T &v) const { return P(*this) -= v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P operator/(const P &r) const { return P(*this) /= r; } P operator%(const P &r) const { return P(*this) %= r; } P &operator+=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < (int) r.size(); i++) (*this)[i] += r[i]; return *this; } P &operator-=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < (int) r.size(); i++) (*this)[i] -= r[i]; return *this; } // https://judge.yosupo.jp/problem/convolution_mod P &operator*=(const P &r) { if(this->empty() || r.empty()) { this->clear(); return *this; } auto ret = NTT::multiply(*this, r); return *this = {begin(ret), end(ret)}; } P &operator/=(const P &r) { if(this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n); } P &operator%=(const P &r) { *this -= *this / r * r; shrink(); return *this; } // https://judge.yosupo.jp/problem/division_of_polynomials pair< P, P > div_mod(const P &r) { P q = *this / r; P x = *this - q * r; x.shrink(); return make_pair(q, x); } P operator-() const { P ret(this->size()); for(int i = 0; i < (int) this->size(); i++) ret[i] = -(*this)[i]; return ret; } P &operator+=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } P &operator-=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] -= r; return *this; } P &operator*=(const T &v) { for(int i = 0; i < (int) this->size(); i++) (*this)[i] *= v; return *this; } P dot(P r) const { P ret(min(this->size(), r.size())); for(int i = 0; i < (int) ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } P operator>>(int sz) const { if((int) this->size() <= sz) return {}; P ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } P operator<<(int sz) const { P ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } T operator()(T x) const { T r = 0, w = 1; for(auto &v : *this) { r += w * v; w *= x; } return r; } // differential (微分) P diff() const { const int n = (int) this->size(); P ret(max((int)0, n-1)); for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } P integral() const { const int n = (int) this->size(); P ret(n + 1); ret[0] = T(0); for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1); return ret; } // https://judge.yosupo.jp/problem/inv_of_formal_power_series // F(0) must not be 0 P inv(int deg = -1) const { assert(((*this)[0]) != T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P res(deg); res[0] = {T(1) / (*this)[0]}; for(int d = 1; d < deg; d <<= 1) { P f(2 * d), g(2 * d); for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j]; for(int j = 0; j < d; j++) g[j] = res[j]; NTT::ntt(f); NTT::ntt(g); f = f.dot(g); NTT::intt(f); for(int j = 0; j < d; j++) f[j] = 0; NTT::ntt(f); for(int j = 0; j < 2 * d; j++) f[j] *= g[j]; NTT::intt(f); for(int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res; } // https://judge.yosupo.jp/problem/log_of_formal_power_series // F(0) must be 1 P log(int deg = -1) const { assert((*this)[0] == T(1)); const int n = (int) this->size(); if(deg == -1) deg = n; return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } // https://judge.yosupo.jp/problem/sqrt_of_formal_power_series P sqrt(int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; if((*this)[0] == T(0)) { for(int i = 1; i < n; i++) { if((*this)[i] != T(0)) { if(i & 1) return {}; if(deg - i / 2 <= 0) break; auto ret = (*this >> i).sqrt(deg - i / 2); if(ret.empty()) return {}; ret = ret << (i / 2); if((int) ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return P(deg, 0); } auto sqr = T((*this)[0].get_sqrt()); if(sqr * sqr != (*this)[0]) return {}; P ret{sqr}; T inv2 = T(1) / T(2); for(int i = 1; i < deg; i <<= 1) { ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2; } return ret.pre(deg); } // https://judge.yosupo.jp/problem/exp_of_formal_power_series // F(0) must be 0 P exp(int deg = -1) const { if(deg == -1) deg = this->size(); assert((*this)[0] == T(0)); P inv; inv.reserve(deg + 1); inv.push_back(T(0)); inv.push_back(T(1)); auto inplace_integral = [&](P &F) -> void { const int n = (int) F.size(); auto mod = T::mod(); while((int) inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), T(0)); for(int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](P &F) -> void { if(F.empty()) return; F.erase(begin(F)); T coeff = 1, one = 1; for(int i = 0; i < (int) F.size(); i++) { F[i] *= coeff; coeff += one; } }; P b{1, 1 < (int) this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for(int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); NTT::ntt(y); z1 = z2; P z(m); for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; NTT::intt(z); fill(begin(z), begin(z) + m / 2, T(0)); NTT::ntt(z); for(int i = 0; i < m; ++i) z[i] *= -z1[i]; NTT::intt(z); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); NTT::ntt(z2); P x(begin(*this), begin(*this) + min< int >(this->size(), m)); inplace_diff(x); x.push_back(T(0)); NTT::ntt(x); for(int i = 0; i < m; ++i) x[i] *= y[i]; NTT::intt(x); x -= b.diff(); x.resize(2 * m); for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = T(0); NTT::ntt(x); for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; NTT::intt(x); x.pop_back(); inplace_integral(x); for(int i = m; i < min< int >(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, T(0)); NTT::ntt(x); for(int i = 0; i < 2 * m; ++i) x[i] *= y[i]; NTT::intt(x); b.insert(end(b), begin(x) + m, end(x)); } return P{begin(b), begin(b) + deg}; } // https://judge.yosupo.jp/problem/pow_of_formal_power_series P pow(int64_t k, int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; if(k == 0) { P ret(deg, T(0)); ret[0] = T(1); return ret; } for(int i = 0; i < n; i++) { if(i * k > deg) return P(deg, T(0)); if((*this)[i] != T(0)) { T rev = T(1) / (*this)[i]; P ret = (((*this * rev) >> i).log(deg) * k).exp(deg) * ((*this)[i].pow(k)); ret = (ret << (i * k)).pre(deg); if((int) ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return *this; } P mod_pow(int64_t k, P g) const { P modinv = g.rev().inv(); auto get_div = [&](P base) { if(base.size() < g.size()) { base.clear(); return base; } int n = base.size() - g.size() + 1; return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n); }; P x(*this), ret{1}; while(k > 0) { if(k & 1) { ret *= x; ret -= get_div(ret) * g; ret.shrink(); } x *= x; x -= get_div(x) * g; x.shrink(); k >>= 1; } return ret; } // https://judge.yosupo.jp/problem/polynomial_taylor_shift P taylor_shift(T c) const { int n = (int) this->size(); vector< T > fact(n), rfact(n); fact[0] = rfact[0] = T(1); for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i); rfact[n - 1] = T(1) / fact[n - 1]; for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i); P p(*this); for(int i = 0; i < n; i++) p[i] *= fact[i]; p = p.rev(); P bs(n, T(1)); for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1]; p = (p * bs).pre(n); p = p.rev(); for(int i = 0; i < n; i++) p[i] *= rfact[i]; return p; } }; //FPSの挙動 refer: https://ei1333.github.io/library/math/fps/formal-power-series-friendly-ntt.hpp using mint = modint998244353; template< typename Mint > using FPS = FormalPowerSeriesFriendlyNTT< Mint >; using fps = FPS<mint>; // インスタンスは自動解釈される // Σf^i [0, n)を逆元なしで求める。 template<template<typename> class Inner_FPS, typename Mint> Inner_FPS<Mint> geometric_polynomial(const Inner_FPS<Mint> &x, const long long &n, const int °) { if (n == 0) return Inner_FPS<Mint>(deg, 0); long long m = n/2; Inner_FPS<Mint> half = geometric_polynomial(x, m, deg); Inner_FPS<Mint> res = half + x.pow(m, deg) * half; if (n % 2 == 1) { res *= x; ++res[0]; } return res.pre(deg); } void solve() { int n, k; cin >> n >> k; fps f(n+1); repi(i, k, n+1) f[i] = mint::raw(1); fps g = geometric_polynomial(f, n+1, n+1); mint ans = 0; FOR(n+1) ans += g[i]; cout << ans.val() << endl; } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); solve(); return 0; }