結果
問題 | No.187 中華風 (Hard) |
ユーザー | cexen |
提出日時 | 2024-06-25 22:42:08 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 14,276 bytes |
コンパイル時間 | 150 ms |
コンパイル使用メモリ | 82,620 KB |
実行使用メモリ | 80,804 KB |
最終ジャッジ日時 | 2024-06-25 22:42:18 |
合計ジャッジ時間 | 7,401 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 75 ms
73,856 KB |
testcase_01 | AC | 95 ms
73,856 KB |
testcase_02 | AC | 319 ms
79,360 KB |
testcase_03 | AC | 309 ms
79,360 KB |
testcase_04 | AC | 334 ms
79,616 KB |
testcase_05 | AC | 360 ms
79,744 KB |
testcase_06 | AC | 327 ms
79,616 KB |
testcase_07 | AC | 324 ms
79,616 KB |
testcase_08 | AC | 325 ms
79,616 KB |
testcase_09 | AC | 345 ms
79,360 KB |
testcase_10 | AC | 330 ms
79,488 KB |
testcase_11 | AC | 331 ms
79,788 KB |
testcase_12 | AC | 354 ms
79,616 KB |
testcase_13 | AC | 230 ms
79,232 KB |
testcase_14 | AC | 230 ms
78,976 KB |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | AC | 67 ms
68,736 KB |
testcase_18 | AC | 76 ms
73,088 KB |
testcase_19 | AC | 63 ms
69,376 KB |
testcase_20 | AC | 293 ms
79,608 KB |
testcase_21 | AC | 64 ms
69,120 KB |
testcase_22 | AC | 362 ms
79,616 KB |
testcase_23 | AC | 64 ms
69,120 KB |
testcase_24 | AC | 68 ms
68,736 KB |
ソースコード
# https://github.com/cexen/procon-cexen/blob/main/py/util_num.py def popcount63(n: int) -> int: """ Returns the number of 1 bits. Faster than popcount(n). Required: 0 <= n < (1 << 63). cf. https://nixeneko.hatenablog.com/entry/2018/03/04/000000 >>> popcount(0b11110001) 5 """ # Note: 63 bit is much faster than 64 bit on PyPy3 7.3.0 assert 0 <= n <= 0x7FFFFFFFFFFFFFFF # this tells PyPy to use int64_t c = (n & 0x5555555555555555) + ((n >> 1) & 0x5555555555555555) c = (c & 0x3333333333333333) + ((c >> 2) & 0x3333333333333333) c = (c & 0x0F0F0F0F0F0F0F0F) + ((c >> 4) & 0x0F0F0F0F0F0F0F0F) c = (c & 0x00FF00FF00FF00FF) + ((c >> 8) & 0x00FF00FF00FF00FF) c = (c & 0x0000FFFF0000FFFF) + ((c >> 16) & 0x0000FFFF0000FFFF) c = (c & 0x00000000FFFFFFFF) + ((c >> 32) & 0x00000000FFFFFFFF) return c def popcount(n: int) -> int: """ Returns the number of 1 bits. cf. https://nixeneko.hatenablog.com/entry/2018/03/04/000000 >>> popcount(0b11110001) 5 """ assert n >= 0 s = 0 while n: # Note: 63 bit is much faster than 64 bit on PyPy3 7.3.0 c = n & 0x7FFFFFFFFFFFFFFF # c: uint64_t c = (c & 0x5555555555555555) + ((c >> 1) & 0x5555555555555555) c = (c & 0x3333333333333333) + ((c >> 2) & 0x3333333333333333) c = (c & 0x0F0F0F0F0F0F0F0F) + ((c >> 4) & 0x0F0F0F0F0F0F0F0F) c = (c & 0x00FF00FF00FF00FF) + ((c >> 8) & 0x00FF00FF00FF00FF) c = (c & 0x0000FFFF0000FFFF) + ((c >> 16) & 0x0000FFFF0000FFFF) c = (c & 0x00000000FFFFFFFF) + ((c >> 32) & 0x00000000FFFFFFFF) s += c n >>= 63 return s def popcount2(n: int) -> int: """ Returns the number of 1 bits. Good for sparse bits. cf. https://nixeneko.hatenablog.com/entry/2018/03/04/000000 >>> popcount2(0b11110001) 5 """ s = 0 while n: s += 1 n -= n & (-n) return s def generate_primes(n: int) -> list[int]: """ O(sqrt(n)). Returns list of primes <= n. cf. https://strangerxxx.hateblo.jp/entry/20210514/1620925766 cf. https://strangerxxx.hateblo.jp/entry/20230227/1677491214 >>> generate_primes(11) [2, 3, 5, 7, 11] """ if n <= 1: return [] m = (n + 1) // 2 isprime = [1] * m isprime[0] = 0 for i in range(1, m): k = 2 * i + 1 if k * k > n: break if not isprime[i]: continue for j in range(i, m): ni = 2 * i * j + i + j # assert 2 * ni + 1 == k * (2 * j + 1) if ni >= m: break isprime[ni] = 0 p = [2] p.extend(2 * i + 1 for i in range(m) if isprime[i]) return p from collections import Counter from collections.abc import Iterable def fact_in_primes(n: int, primes: Iterable[int]) -> Counter[int]: """ primes must be sorted. >>> fact_in_primes(60, generate_primes(60)) Counter({2: 2, 3: 1, 5: 1}) """ # assert 1 not in primes c = Counter[int]() for p in primes: if n < p: break while n % p == 0: n //= p c[p] += 1 assert n == 1 return c from math import sqrt def fact(n: int) -> list[int]: """ O(sqrt(n)). Returned prime list will be sorted. >>> fact(60) [2, 2, 3, 5] """ primes = list[int]() for p in range(2, 2 + int(sqrt(n))): while n % p == 0: n = n // p primes.append(p) if n > 1: primes.append(n) return primes def list_divisors(n: int) -> list[int]: """ O(sqrt(n)). cf. https://algo-logic.info/divisor/ >>> list_divisors(60) [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60] """ assert n > 0 divs1 = list[int]() divs2 = list[int]() for d in range(1, n + 1): if d * d > n: break if not n % d: divs1.append(d) if d * d != n: divs2.append(n // d) divs1.extend(reversed(divs2)) return divs1 def list_factors_eratosthenes(n: int) -> list[list[int]]: """ O(n log log n). Returns factors of [0, n]. Factors will be sorted. Note that len(factorses[0]) == len(factorses[1]) == 0. >>> list_factors_eratosthenes(6) [[], [], [2], [3], [2], [5], [2, 3]] """ factorses = [list[int]() for _ in range(n + 1)] for i in range(2, n + 1): if len(factorses[i]) > 0: continue for j in range(1, 1 + n // i): factorses[i * j].append(i) return factorses from collections import Counter def factorize_eratosthenes(n: int) -> list[Counter[int]]: """ O(n log n). Returns counters of factors of [0, n]. Note that len(factorses[0]) == len(factorses[1]) == 0. >>> factorize_eratosthenes(4) [Counter(), Counter(), Counter({2: 1}), Counter({3: 1}), Counter({2: 2})] """ factorses = [Counter[int]() for _ in range(n + 1)] for i in range(2, n + 1): if len(factorses[i]) > 0: continue for j in range(1, 1 + n // i): m = j cnt = 1 while m % i == 0: m //= i cnt += 1 factorses[i * j][i] = cnt return factorses def list_divisors_eratosthenes(n: int) -> list[list[int]]: """ O(n log n). Returns divisors of of [0, n]. Divisors will be sorted. Note that divisorses[0] == [1]. >>> list_divisors_eratosthenes(6) [[1], [1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6]] """ divisorses = [[1] for _ in range(n + 1)] for i in range(2, n + 1): for j in range(1, 1 + n // i): divisorses[i * j].append(i) return divisorses from collections import Counter def list_divisors_from_counter(factors: Counter[int]) -> list[int]: """ >>> list_divisors_from_counter(Counter({2: 2, 3: 1, 5: 1})) [1, 5, 3, 15, 2, 10, 6, 30, 4, 20, 12, 60] """ q = [1] for k, v in factors.items(): nq = [] for m in q: nm = m for _ in range(v + 1): nq.append(nm) nm *= k q = nq return q from collections.abc import Iterable def list_divisors_from_list(x: int, factors: Iterable[int]) -> list[int]: """ >>> list_divisors_from_list(60, generate_primes(60)) [1, 5, 3, 15, 2, 10, 6, 30, 4, 20, 12, 60] """ q = [1] for p in factors: nq = [] cnt = 0 while x % p == 0: x //= p cnt += 1 for m in q: nm = m for _ in range(cnt + 1): nq.append(nm) nm *= p q = nq return q from collections import Counter from collections.abc import Iterable def lcmmod(*x: int, mod: int) -> int: """ Returns lcm(*x) % mod. O(sum(sqrt(xi))). cf. https://blog.hamayanhamayan.com/entry/2017/05/21/001646 """ c = Counter[int]() for xi in x: cc = Counter(fact(xi)) for k, v in cc.items(): c[k] = max(c[k], v) ans = 1 for k, v in c.items(): ans = ans * pow(k, v, mod) % MOD return ans def floorlog2(n: int) -> int: if not n > 0: raise ValueError ans = 0 while 1 << (ans + 1) <= n: ans += 1 return ans def ndigit2(n: int) -> int: return 1 + floorlog2(n) def ceillog2(n: int) -> int: if not n > 0: raise ValueError ans = 0 while 1 << ans < n: ans += 1 return ans def floorlog(n: int, b: int = 10) -> int: if not n > 0: raise ValueError ans = 0 while b ** (ans + 1) <= n: ans += 1 return ans def ndigit(n: int, b: int = 10) -> int: return 1 + floorlog(n, b) def ceillog(n: int, b: int = 10) -> int: if not n > 0: raise ValueError ans = 0 while b**ans < n: ans += 1 return ans from collections.abc import Callable from typing import TypeVar _T = TypeVar("_T") def pow_iter(base: _T, exp: int, e: _T, f: Callable[[_T, _T], _T]): ans = e for i in reversed(range(exp.bit_length())): ans = f(ans, ans) if exp & (1 << i): ans = f(ans, base) return ans def euclid(a: int, b: int): """ Returns (p, q, gcd(a, b)) s.t. ap + bq = gcd(a, b). O(log min(a, b)). >>> euclid(3, 0) (1, 0, 3) >>> euclid(0, 3) (0, 1, 3) >>> euclid(4, 6) (-1, 1, 2) """ ks = list[int]() while b != 0: ks.append(a // b) a, b = b, a % b p, q = 1, 0 for k in reversed(ks): p, q = q, p - k * q return p, q, a def inv(a: int, mod: int) -> int: """ Returns ia s.t. ia * a = 1 under mod. Returns 0 if nonexistent (gcd(a, mod) != 1). O(log min(a, mod)). On PyPy 3.10: inv(a, mod) is faster than pow(a, -1, mod). On CPython 3.11: inv(a, mod) is slower than pow(a, -1, mod). >>> def inv2(a: int, mod: int) -> int: ... try: ... return pow(a, -1, mod) ... except ValueError: ... return 0 >>> for a in range(-100, 100): ... for mod in range(1, 20): ... assert inv(a, mod) == inv2(a, mod) """ ia, _, d = euclid(a, mod) # ia * a + _ * mod = d return ia % mod if d == 1 else 0 from math import ceil, gcd, sqrt def discrete_log(a: int, b: int, m: int, m_is_prime: bool) -> int: """ O(m**0.5). Baby-step giant-step. v1.1 @cexen. Returns min x s.t. 0<=x<m and a**x=b mod m. Returns -1 if nonexistent. Works ok with gcd(a, m) != 1. Note that 0**0 == 1. cf. https://qiita.com/suisen_cp/items/d597c8ec576ae32ee2d7 """ assert m >= 1 if m == 1: return 0 a %= m b %= m if a == 0: if b == 1: return 0 elif b == 0: return 1 else: return -1 # reduce m to ensure gcd(a, m) == 1 d = m.bit_length() - 1 ax = 1 for x in range(d): if ax == b: return x ax = ax * a % m if ax == 0: return d if b == 0 else -1 g = gcd(ax, m) if b % g != 0: return -1 m //= g if m_is_prime: iv = pow(ax, m - 2, m) else: iv = inv(ax, m) assert iv != 0, "unreachable" b = b * iv % m # baby-step, giant-step # assert gcd(a, m) == 1, "unreachable" k = ceil(sqrt(m)) s = dict[int, int]() ax = 1 for x in range(k): s.setdefault(ax, x) ax = ax * a % m if m_is_prime: iak = pow(ax, m - 2, m) else: iak = inv(ax, m) assert iak != 0, "unreachable" iakx = 1 for x in range(k + 1): r = s.get(iakx * b % m, -1) if r != -1: return d + x * k + r iakx = iakx * iak % m return -1 from collections.abc import Sequence def crt_naive(rs: Sequence[int], ms: Sequence[int]) -> tuple[int | None, int | None]: """ Returns (r, lcm(ms)) of x = r (mod lcm(ms)) s.t. x = ri (mod mi). Returns (None, None) if there is no solution. 0 <= r < lcm(ms) or r is None. O(len(ms) sum(log mi)). cf. https://qiita.com/drken/items/ae02240cd1f8edfc86fd >>> crt_naive([2, 3], [3, 5]) (8, 15) >>> crt_naive([0, 2], [4, 6]) (8, 12) >>> crt_naive([0, 1], [4, 6]) (None, None) """ assert len(rs) == len(ms) r, m = 0, 1 for ri, mi in zip(rs, ms): p, _, d = euclid(m, mi) # Note that p m/d + _ mi/d = 1 if (ri - r) % d != 0: return (None, None) k = (ri - r) // d * p # km = (ri-r)pm/d = ri-r (mod mi/d) l = k % (mi // d) r += l * m # r+lm = r (mod m), r+lm = r+km = ri (mod mi/d) m *= mi // d return r % m, m from collections.abc import Sequence def crt_garner(rs: Sequence[int], ms: Sequence[int], mod: int) -> int | None: """ Returns r % mod of x = r (mod lcm(ms)) s.t. x = ri (mod mi). Returns None if there is no solution. 0 <= r < min(mod, lcm(ms)) or r is None. O(n**2 + n (sum(log mi)+log mod)) where n = len(rs). cf. https://qiita.com/drken/items/ae02240cd1f8edfc86fd https://math314.hateblo.jp/entry/2015/05/07/014908 >>> crt_garner([2, 3], [3, 5], 1000000007) 8 >>> crt_garner([2, 3], [3, 5], 5) 3 >>> crt_garner([0, 2], [4, 6], 1000000009) 8 >>> crt_garner([0, 2], [4, 6], 4) 0 >>> crt_garner([0, 1], [4, 6], 10) # returns None >>> crt_garner([], [], 3) # lcm([]) == 1 0 """ # reduce the problem so that ms are prime to each other # O(n (sum(log mi)+log mod)). # cf. https://qiita.com/drken/items/ae02240cd1f8edfc86fd ms = list(ms) assert len(rs) == len(ms) n = len(rs) for i in range(n - 1): for j in range(i + 1, n): g = gcd(ms[i], ms[j]) if (rs[i] - rs[j]) % g: return None ms[i] //= g ms[j] //= g gi = gcd(g, ms[i]) gj = g // gi # O(log log g). # sample: g=1000, gi=1, gj=0. while (g := gcd(gi, gj)) != 1: gi *= g gj //= g ms[i] *= gi ms[j] *= gj # garner ms.append(mod) # m_n = mod assert len(ms) == n + 1 # find: x = x0 + x1m0 + x2m0m1 + x3m0m1m2 + ... + x_{n-1}m0m1...m_{n-2} # sx = [0%m0, x0%m1, (x0+x1m0)%m2, ..., (x0+...+x_{n-1}m0m1...m_{n-2})%m_n] # mm = [1%m0, m0%m1, m0m1%m2, m0m1m2%m3, ..., m0m1m2...m_{n-1}%m_n] sx = [0] * (n + 1) mm = [1] * (n + 1) for i in range(n): xi = (rs[i] - sx[i]) * inv(mm[i], ms[i]) % ms[i] for j in range(1, n + 1): sx[j] = (sx[j] + xi * mm[j]) % ms[j] mm[j] = mm[j] * ms[i] % ms[j] return sx[-1] # -------------------- def solve_yukicoder_no_187(): """ yukicoder: No.187 中華風 (Hard) https://yukicoder.me/problems/no/187 """ MOD = 1000000007 N = int(input()) X = list[int]() Y = list[int]() for _ in range(N): x, y = map(int, input().split()) X.append(x) Y.append(y) if all(x == 0 for x in X): ans = lcmmod(*Y, mod=MOD) else: ans = crt_garner(X, Y, MOD) print(ans if ans is not None else -1) solve_yukicoder_no_187()