結果

問題 No.1112 冥界の音楽
ユーザー ebi_flyebi_fly
提出日時 2024-06-26 21:50:37
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 31,802 bytes
コンパイル時間 4,044 ms
コンパイル使用メモリ 278,028 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-26 21:50:43
合計ジャッジ時間 5,340 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 2 ms
6,944 KB
testcase_12 AC 2 ms
6,944 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 AC 2 ms
6,944 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 2 ms
6,944 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 2 ms
6,940 KB
testcase_22 AC 3 ms
6,944 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 AC 2 ms
6,944 KB
testcase_25 AC 2 ms
6,940 KB
testcase_26 AC 2 ms
6,940 KB
testcase_27 AC 2 ms
6,940 KB
testcase_28 AC 2 ms
6,944 KB
testcase_29 AC 2 ms
6,944 KB
testcase_30 AC 3 ms
6,940 KB
testcase_31 AC 2 ms
6,944 KB
testcase_32 AC 3 ms
6,940 KB
testcase_33 AC 2 ms
6,940 KB
testcase_34 AC 2 ms
6,944 KB
testcase_35 AC 2 ms
6,940 KB
testcase_36 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "convolution/convolution.hpp"

#include <algorithm>
#include <bit>
#include <vector>

#line 2 "convolution/ntt.hpp"

#line 4 "convolution/ntt.hpp"
#include <array>
#line 6 "convolution/ntt.hpp"
#include <cassert>
#line 8 "convolution/ntt.hpp"

#line 2 "math/internal_math.hpp"

#line 4 "math/internal_math.hpp"

namespace ebi {

namespace internal {

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    if (m == 880803841) return 26;
    if (m == 924844033) return 5;
    return -1;
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace ebi
#line 2 "modint/base.hpp"

#include <concepts>
#include <iostream>
#include <utility>

namespace ebi {

template <class T>
concept Modint = requires(T a, T b) {
    a + b;
    a - b;
    a * b;
    a / b;
    a.inv();
    a.val();
    a.pow(std::declval<long long>());
    T::mod();
};

template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
    long long x;
    os >> x;
    a = x;
    return os;
}

template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
    return os << a.val();
}

}  // namespace ebi
#line 2 "template/int_alias.hpp"

#include <cstdint>

namespace ebi {

using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;

}  // namespace ebi
#line 12 "convolution/ntt.hpp"

namespace ebi {

namespace internal {

template <Modint mint, int g = internal::primitive_root<mint::mod()>>
struct ntt_info {
    static constexpr int rank2 =
        std::countr_zero((unsigned int)(mint::mod() - 1));

    std::array<mint, rank2 + 1> root, inv_root;

    ntt_info() {
        root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
        inv_root[rank2] = root[rank2].inv();
        for (int i = rank2 - 1; i >= 0; i--) {
            root[i] = root[i + 1] * root[i + 1];
            inv_root[i] = inv_root[i + 1] * inv_root[i + 1];
        }
    }
};

template <Modint mint> void fft2(std::vector<mint>& a) {
    static const ntt_info<mint> info;
    int n = int(a.size());
    int bit_size = std::countr_zero(a.size());
    assert(n == 1 << bit_size);
    for (int bit = bit_size - 1; bit >= 0; bit--) {
        int m = 1 << bit;
        for (int i = 0; i < n; i += 2 * m) {
            mint w = 1;
            for (int j = 0; j < m; j++) {
                mint p1 = a[i + j];
                mint p2 = a[i + j + m];
                a[i + j] = p1 + p2;
                a[i + j + m] = (p1 - p2) * w;
                w *= info.root[bit + 1];
            }
        }
    }
}

template <Modint mint> void ifft2(std::vector<mint>& a) {
    static const ntt_info<mint> info;
    int n = int(a.size());
    int bit_size = std::countr_zero(a.size());
    assert(n == 1 << bit_size);

    for (int bit = 0; bit < bit_size; bit++) {
        for (int i = 0; i < n / (1 << (bit + 1)); i++) {
            mint w = 1;
            for (int j = 0; j < (1 << bit); j++) {
                int idx = i * (1 << (bit + 1)) + j;
                int jdx = idx + (1 << bit);
                mint p1 = a[idx];
                mint p2 = w * a[jdx];
                a[idx] = p1 + p2;
                a[jdx] = p1 - p2;
                w *= info.inv_root[bit + 1];
            }
        }
    }
}

template <Modint mint> void fft4(std::vector<mint>& a) {
    static const ntt_info<mint> info;
    const u32 mod = mint::mod();
    const u64 iw = info.root[2].val();
    int n = int(a.size());
    int bit_size = std::countr_zero(a.size());
    assert(n == 1 << bit_size);
    int len = bit_size;
    while (len > 0) {
        if (len == 1) {
            for (int i = 0; i < n; i += 2) {
                mint p0 = a[i];
                mint p1 = a[i + 1];
                a[i] = p0 + p1;
                a[i + 1] = p0 - p1;
            }
            len--;
        } else {
            int m = 1 << (len - 2);
            u64 w1 = 1, w2 = 1, w3 = 1, iw1 = iw, iw3 = iw;
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j += 4 * m) {
                    int i0 = i + j, i1 = i0 + m, i2 = i1 + m, i3 = i2 + m;
                    u32 a0 = a[i0].val();
                    u32 a1 = a[i1].val();
                    u32 a2 = a[i2].val();
                    u32 a3 = a[i3].val();
                    u32 a0_plus_a2 = a0 + a2;
                    u32 a1_plus_a3 = a1 + a3;
                    u32 a0_minus_a2 = a0 + mod - a2;
                    u32 a1_minus_a3 = a1 + mod - a3;
                    a[i0] = a0_plus_a2 + a1_plus_a3;
                    a[i1] = a0_minus_a2 * w1 + a1_minus_a3 * iw1;
                    a[i2] = (a0_plus_a2 + 2 * mod - a1_plus_a3) * w2;
                    a[i3] = a0_minus_a2 * w3 + (2 * mod - a1_minus_a3) * iw3;
                }
                w1 = w1 * info.root[len].val() % mod;
                w2 = w1 * w1 % mod;
                w3 = w2 * w1 % mod;
                iw1 = iw * w1 % mod;
                iw3 = iw * w3 % mod;
            }
            len -= 2;
        }
    }
}

template <Modint mint> void ifft4(std::vector<mint>& a) {
    static const ntt_info<mint> info;
    const u32 mod = mint::mod();
    const u64 mod2 = u64(mod) * mod;
    const u64 iw = info.inv_root[2].val();
    int n = int(a.size());
    int bit_size = std::countr_zero(a.size());
    assert(n == 1 << bit_size);
    int len = (bit_size & 1 ? 1 : 2);
    while (len <= bit_size) {
        if (len == 1) {
            for (int i = 0; i < n; i += 2) {
                mint a0 = a[i];
                mint a1 = a[i + 1];
                a[i] = a0 + a1;
                a[i + 1] = a0 - a1;
            }
        } else {
            int m = 1 << (len - 2);
            u64 w1 = 1, w2 = 1, w3 = 1, iw1 = iw, iw3 = iw;
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j += 4 * m) {
                    int i0 = i + j, i1 = i0 + m, i2 = i1 + m, i3 = i2 + m;
                    u64 a0 = a[i0].val();
                    u64 a1 = w1 * a[i1].val();
                    u64 a2 = w2 * a[i2].val();
                    u64 a3 = w3 * a[i3].val();
                    u64 b1 = iw1 * a[i1].val();
                    u64 b3 = iw3 * a[i3].val();
                    u64 a0_plus_a2 = a0 + a2;
                    u64 a1_plus_a3 = a1 + a3;
                    u64 a0_minus_a2 = a0 + mod2 - a2;
                    u64 b1_minus_b3 = b1 + mod2 - b3;
                    a[i0] = a0_plus_a2 + a1_plus_a3;
                    a[i1] = a0_minus_a2 + b1_minus_b3;
                    a[i2] = a0_plus_a2 + mod2 * 2 - a1_plus_a3;
                    a[i3] = a0_minus_a2 + mod2 * 2 - b1_minus_b3;
                }
                w1 = w1 * info.inv_root[len].val() % mod;
                w2 = w1 * w1 % mod;
                w3 = w2 * w1 % mod;
                iw1 = iw * w1 % mod;
                iw3 = iw * w3 % mod;
            }
        }
        len += 2;
    }
}

}  // namespace internal

}  // namespace ebi
#line 9 "convolution/convolution.hpp"

namespace ebi {

template <Modint mint>
std::vector<mint> convolution_naive(const std::vector<mint>& f,
                                    const std::vector<mint>& g) {
    if (f.empty() || g.empty()) return {};
    int n = int(f.size()), m = int(g.size());
    std::vector<mint> c(n + m - 1);
    if (n < m) {
        for (int j = 0; j < m; j++) {
            for (int i = 0; i < n; i++) {
                c[i + j] += f[i] * g[j];
            }
        }
    } else {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                c[i + j] += f[i] * g[j];
            }
        }
    }
    return c;
}

template <Modint mint>
std::vector<mint> convolution(const std::vector<mint>& f,
                              const std::vector<mint>& g) {
    if (f.empty() || g.empty()) return {};
    if (std::min(f.size(), g.size()) < 60) return convolution_naive(f, g);
    int n = (int)std::bit_ceil(f.size() + g.size() - 1);
    std::vector<mint> a(n), b(n);
    std::copy(f.begin(), f.end(), a.begin());
    std::copy(g.begin(), g.end(), b.begin());
    internal::fft4(a);
    internal::fft4(b);
    for (int i = 0; i < n; i++) {
        a[i] *= b[i];
    }
    internal::ifft4(a);
    a.resize(f.size() + g.size() - 1);
    mint inv_n = mint(n).inv();
    for (auto& x : a) x *= inv_n;
    return a;
}

}  // namespace ebi
#line 2 "fps/fps.hpp"

#line 5 "fps/fps.hpp"
#include <optional>
#line 7 "fps/fps.hpp"

#line 9 "fps/fps.hpp"

namespace ebi {

template <Modint mint> struct FormalPowerSeries : std::vector<mint> {
  private:
    using std::vector<mint>::vector;
    using std::vector<mint>::vector::operator=;
    using FPS = FormalPowerSeries;

  public:
    FormalPowerSeries(const std::vector<mint> &a) {
        *this = a;
    }

    FPS operator+(const FPS &rhs) const noexcept {
        return FPS(*this) += rhs;
    }
    FPS operator-(const FPS &rhs) const noexcept {
        return FPS(*this) -= rhs;
    }
    FPS operator*(const FPS &rhs) const noexcept {
        return FPS(*this) *= rhs;
    }
    FPS operator/(const FPS &rhs) const noexcept {
        return FPS(*this) /= rhs;
    }
    FPS operator%(const FPS &rhs) const noexcept {
        return FPS(*this) %= rhs;
    }

    FPS operator+(const mint &rhs) const noexcept {
        return FPS(*this) += rhs;
    }
    FPS operator-(const mint &rhs) const noexcept {
        return FPS(*this) -= rhs;
    }
    FPS operator*(const mint &rhs) const noexcept {
        return FPS(*this) *= rhs;
    }
    FPS operator/(const mint &rhs) const noexcept {
        return FPS(*this) /= rhs;
    }

    FPS &operator+=(const FPS &rhs) noexcept {
        if (this->size() < rhs.size()) this->resize(rhs.size());
        for (int i = 0; i < (int)rhs.size(); ++i) {
            (*this)[i] += rhs[i];
        }
        return *this;
    }

    FPS &operator-=(const FPS &rhs) noexcept {
        if (this->size() < rhs.size()) this->resize(rhs.size());
        for (int i = 0; i < (int)rhs.size(); ++i) {
            (*this)[i] -= rhs[i];
        }
        return *this;
    }

    FPS &operator*=(const FPS &);

    FPS &operator/=(const FPS &rhs) noexcept {
        int n = deg() - 1;
        int m = rhs.deg() - 1;
        if (n < m) {
            *this = {};
            return *this;
        }
        *this = (*this).rev() * rhs.rev().inv(n - m + 1);
        (*this).resize(n - m + 1);
        std::reverse((*this).begin(), (*this).end());
        return *this;
    }

    FPS &operator%=(const FPS &rhs) noexcept {
        *this -= *this / rhs * rhs;
        shrink();
        return *this;
    }

    FPS &operator+=(const mint &rhs) noexcept {
        if (this->empty()) this->resize(1);
        (*this)[0] += rhs;
        return *this;
    }

    FPS &operator-=(const mint &rhs) noexcept {
        if (this->empty()) this->resize(1);
        (*this)[0] -= rhs;
        return *this;
    }

    FPS &operator*=(const mint &rhs) noexcept {
        for (int i = 0; i < deg(); ++i) {
            (*this)[i] *= rhs;
        }
        return *this;
    }
    FPS &operator/=(const mint &rhs) noexcept {
        mint inv_rhs = rhs.inv();
        for (int i = 0; i < deg(); ++i) {
            (*this)[i] *= inv_rhs;
        }
        return *this;
    }

    FPS operator>>(int d) const {
        if (deg() <= d) return {};
        FPS f = *this;
        f.erase(f.begin(), f.begin() + d);
        return f;
    }

    FPS operator<<(int d) const {
        FPS f = *this;
        f.insert(f.begin(), d, 0);
        return f;
    }

    FPS operator-() const {
        FPS g(this->size());
        for (int i = 0; i < (int)this->size(); i++) g[i] = -(*this)[i];
        return g;
    }

    FPS pre(int sz) const {
        return FPS(this->begin(), this->begin() + std::min(deg(), sz));
    }

    FPS rev() const {
        auto f = *this;
        std::reverse(f.begin(), f.end());
        return f;
    }

    FPS differential() const {
        int n = deg();
        FPS g(std::max(0, n - 1));
        for (int i = 0; i < n - 1; i++) {
            g[i] = (*this)[i + 1] * (i + 1);
        }
        return g;
    }

    FPS integral() const {
        int n = deg();
        FPS g(n + 1);
        g[0] = 0;
        if (n > 0) g[1] = 1;
        auto mod = mint::mod();
        for (int i = 2; i <= n; i++) g[i] = (-g[mod % i]) * (mod / i);
        for (int i = 0; i < n; i++) g[i + 1] *= (*this)[i];
        return g;
    }

    FPS inv(int d = -1) const {
        int n = 1;
        if (d < 0) d = deg();
        FPS g(n);
        g[0] = (*this)[0].inv();
        while (n < d) {
            n <<= 1;
            g = (g * 2 - g * g * this->pre(n)).pre(n);
        }
        g.resize(d);
        return g;
    }

    FPS log(int d = -1) const {
        assert((*this)[0].val() == 1);
        if (d < 0) d = deg();
        return ((*this).differential() * (*this).inv(d)).pre(d - 1).integral();
    }

    FPS exp(int d = -1) const {
        assert((*this)[0].val() == 0);
        int n = 1;
        if (d < 0) d = deg();
        FPS g(n);
        g[0] = 1;
        while (n < d) {
            n <<= 1;
            g = (g * (this->pre(n) - g.log(n) + 1)).pre(n);
        }
        g.resize(d);
        return g;
    }

    FPS pow(long long k, int d = -1) const {
        assert(k >= 0);
        int n = deg();
        if (d < 0) d = n;
        if (k == 0) {
            FPS f(d);
            if (d > 0) f[0] = 1;
            return f;
        }
        int low = d;
        for (int i = n - 1; i >= 0; i--)
            if ((*this)[i] != 0) low = i;
        if (low >= (d + k - 1) / k) return FPS(d, 0);
        int offset = k * low;
        mint c = (*this)[low];
        FPS g(d - offset);
        for (int i = 0; i < std::min(n - low, d - offset); i++) {
            g[i] = (*this)[i + low];
        }
        g /= c;
        g = g.pow_1(k);
        return (g << offset) * c.pow(k);
    }

    FPS pow_1(mint k, int d = -1) const {
        assert((*this)[0] == 1);
        return ((*this).log(d) * k).exp(d);
    }

    FPS pow_newton(long long k, int d = -1) const {
        assert(k >= 0);
        const int n = deg();
        if (d < 0) d = n;
        if (k == 0) {
            FPS f(d);
            if (d > 0) f[0] = 1;
            return f;
        }
        for (int i = 0; i < n; i++) {
            if ((*this)[i] != 0) {
                mint rev = (*this)[i].inv();
                FPS f = (((*this * rev) >> i).log(d) * k).exp(d);
                f *= (*this)[i].pow(k);
                f = (f << (i * k)).pre(d);
                if (f.deg() < d) f.resize(d);
                return f;
            }
            if (i + 1 >= (d + k - 1) / k) break;
        }
        return FPS(d);
    }

    int deg() const {
        return (*this).size();
    }

    void shrink() {
        while ((!this->empty()) && this->back() == 0) this->pop_back();
    }

    int count_terms() const {
        int c = 0;
        for (int i = 0; i < deg(); i++) {
            if ((*this)[i] != 0) c++;
        }
        return c;
    }

    std::optional<FPS> sqrt(int d = -1) const;

    static FPS exp_x(int n) {
        FPS f(n);
        mint fact = 1;
        for (int i = 1; i < n; i++) fact *= i;
        f[n - 1] = fact.inv();
        for (int i = n - 1; i >= 0; i--) f[i - 1] = f[i] * i;
        return f;
    }

    void fft();
    void ifft();
};

}  // namespace ebi
#line 2 "matrix/black_box_linear_algebra.hpp"

#line 5 "matrix/black_box_linear_algebra.hpp"

#line 2 "fps/berlekamp_massey.hpp"

#line 5 "fps/berlekamp_massey.hpp"

#line 7 "fps/berlekamp_massey.hpp"

namespace ebi {

template <Modint mint>
std::vector<mint> berlekamp_massey(const std::vector<mint> &s) {
    std::vector<mint> C = {1}, B = {1};
    int L = 0, m = 1;
    mint b = 1;
    for (int n = 0; n < (int)s.size(); n++) {
        mint d = s[n];
        for (int i = 1; i <= L; i++) {
            d += s[n - i] * C[i];
        }
        if (d == 0) {
            m++;
        } else if (2 * L <= n) {
            auto T = C;
            mint f = d / b;
            C.resize((int)B.size() + m);
            for (int i = 0; i < (int)B.size(); i++) {
                C[i + m] -= f * B[i];
            }
            L = n + 1 - L;
            B = T;
            b = d;
            m = 1;
        } else {
            mint f = d / b;
            for (int i = 0; i < (int)B.size(); i++) {
                C[i + m] -= f * B[i];
            }
            m++;
        }
    }
    return C;
}

}  // namespace ebi
#line 2 "fps/poly_mod_pow.hpp"

#line 5 "fps/poly_mod_pow.hpp"

namespace ebi {

template <Modint mint>
FormalPowerSeries<mint> poly_mod_pow(FormalPowerSeries<mint> f, long long k,
                                     const FormalPowerSeries<mint> &g) {
    FormalPowerSeries<mint> res = {1};
    while (k > 0) {
        if (k & 1) {
            res *= f;
            res %= g;
            res.shrink();
        }
        f *= f;
        f %= g;
        f.shrink();
        k >>= 1;
    }
    return res;
}

}  // namespace ebi
#line 2 "utility/random_number_generator.hpp"

#line 4 "utility/random_number_generator.hpp"
#include <random>

namespace ebi {

struct random_number_generator {
    random_number_generator(int seed = -1) {
        if (seed < 0) seed = rnd();
        mt.seed(seed);
    }

    void set_seed(int seed) {
        mt.seed(seed);
    }

    template <class T> T get(T a, T b) {
        std::uniform_int_distribution<T> dist(a, b - 1);
        return dist(mt);
    }

  private:
    std::mt19937_64 mt;
    std::random_device rnd;
};

}  // namespace ebi
#line 10 "matrix/black_box_linear_algebra.hpp"

namespace ebi {

template <Modint mint, class F>
std::vector<mint> matrix_minimum_poly(int n, F Ax) {
    static random_number_generator rng;
    std::vector<mint> s(2 * n + 10, 0), u(n), b(n);
    for (int i = 0; i < n; i++) {
        u[i] = rng.get(0, mint::mod());
        b[i] = rng.get(0, mint::mod());
    }
    for (int i = 0; i < 2 * n + 10; i++) {
        for (int j = 0; j < n; j++) {
            s[i] += u[j] * b[j];
        }
        b = Ax(b);
    }
    auto c = berlekamp_massey(s);
    std::reverse(c.begin(), c.end());
    return c;
}

template <Modint mint, class F>
std::vector<mint> pow(int n, F Ax, const std::vector<mint> &b, long long k) {
    assert(n == (int)b.size());
    using FPS = FormalPowerSeries<mint>;
    auto g = matrix_minimum_poly<mint>(n, Ax);
    auto c = poly_mod_pow<mint>({0, 1}, k, g);
    FPS res(n, 0), Ab = b;
    for (int i = 0; i < (int)c.size(); i++) {
        res += Ab * c[i];
        Ab = FPS(Ax(Ab));
    }
    return res;
}

template <Modint mint, class F> mint det(int n, F Ax) {
    static random_number_generator rng;
    std::vector<mint> d(n);
    mint r = 1;
    for (int i = 0; i < n; i++) {
        d[i] = rng.get(1, mint::mod());
        r *= d[i];
    }
    auto ADx = [&](std::vector<mint> v) -> std::vector<mint> {
        assert(n == (int)v.size());
        for (int i = 0; i < n; i++) {
            v[i] *= d[i];
        }
        return Ax(v);
    };
    auto f = matrix_minimum_poly<mint>(n, ADx);
    mint res = ((int)f.size() == n + 1 ? f[0] : 0);
    if (n % 2 == 1) res = -res;
    return res / r;
}

}  // namespace ebi
#line 2 "modint/modint.hpp"

#line 5 "modint/modint.hpp"

#line 7 "modint/modint.hpp"

namespace ebi {

template <int m> struct static_modint {
  private:
    using modint = static_modint;

  public:
    static constexpr int mod() {
        return m;
    }

    static constexpr modint raw(int v) {
        modint x;
        x._v = v;
        return x;
    }

    constexpr static_modint() : _v(0) {}

    template <std::signed_integral T> constexpr static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }

    template <std::unsigned_integral T> constexpr static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    constexpr unsigned int val() const {
        return _v;
    }

    constexpr unsigned int value() const {
        return val();
    }

    constexpr modint &operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    constexpr modint &operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }

    constexpr modint operator++(int) {
        modint res = *this;
        ++*this;
        return res;
    }
    constexpr modint operator--(int) {
        modint res = *this;
        --*this;
        return res;
    }

    constexpr modint &operator+=(const modint &rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    constexpr modint &operator-=(const modint &rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    constexpr modint &operator*=(const modint &rhs) {
        unsigned long long x = _v;
        x *= rhs._v;
        _v = (unsigned int)(x % (unsigned long long)umod());
        return *this;
    }
    constexpr modint &operator/=(const modint &rhs) {
        return *this = *this * rhs.inv();
    }

    constexpr modint operator+() const {
        return *this;
    }
    constexpr modint operator-() const {
        return modint() - *this;
    }

    constexpr modint pow(long long n) const {
        assert(0 <= n);
        modint x = *this, res = 1;
        while (n) {
            if (n & 1) res *= x;
            x *= x;
            n >>= 1;
        }
        return res;
    }
    constexpr modint inv() const {
        assert(_v);
        return pow(umod() - 2);
    }

    friend modint operator+(const modint &lhs, const modint &rhs) {
        return modint(lhs) += rhs;
    }
    friend modint operator-(const modint &lhs, const modint &rhs) {
        return modint(lhs) -= rhs;
    }
    friend modint operator*(const modint &lhs, const modint &rhs) {
        return modint(lhs) *= rhs;
    }

    friend modint operator/(const modint &lhs, const modint &rhs) {
        return modint(lhs) /= rhs;
    }
    friend bool operator==(const modint &lhs, const modint &rhs) {
        return lhs.val() == rhs.val();
    }
    friend bool operator!=(const modint &lhs, const modint &rhs) {
        return !(lhs == rhs);
    }

  private:
    unsigned int _v = 0;

    static constexpr unsigned int umod() {
        return m;
    }
};

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;

}  // namespace ebi
#line 1 "template/template.hpp"
#include <bits/stdc++.h>

#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()

#line 2 "template/debug_template.hpp"

#line 4 "template/debug_template.hpp"

namespace ebi {

#ifdef LOCAL
#define debug(...)                                                      \
    std::cerr << "LINE: " << __LINE__ << "  [" << #__VA_ARGS__ << "]:", \
        debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif

void debug_out() {
    std::cerr << std::endl;
}

template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
    std::cerr << " " << h;
    if (sizeof...(t) > 0) std::cerr << " :";
    debug_out(t...);
}

}  // namespace ebi
#line 2 "template/io.hpp"

#line 7 "template/io.hpp"

namespace ebi {

template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
    return os << pa.first << " " << pa.second;
}

template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
    return os >> pa.first >> pa.second;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
    for (std::size_t i = 0; i < vec.size(); i++)
        os << vec[i] << (i + 1 == vec.size() ? "" : " ");
    return os;
}

template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
    for (T &e : vec) std::cin >> e;
    return os;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
    if (opt) {
        os << opt.value();
    } else {
        os << "invalid value";
    }
    return os;
}

void fast_io() {
    std::cout << std::fixed << std::setprecision(15);
    std::cin.tie(nullptr);
    std::ios::sync_with_stdio(false);
}

}  // namespace ebi
#line 2 "template/utility.hpp"

#line 5 "template/utility.hpp"

#line 2 "graph/base.hpp"

#line 5 "graph/base.hpp"
#include <ranges>
#line 7 "graph/base.hpp"

#line 2 "data_structure/simple_csr.hpp"

#line 6 "data_structure/simple_csr.hpp"

namespace ebi {

template <class E> struct simple_csr {
    simple_csr() = default;

    simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
        : start(n + 1, 0), elist(elements.size()) {
        for (auto e : elements) {
            start[e.first + 1]++;
        }
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] += start[i];
        }
        auto counter = start;
        for (auto [i, e] : elements) {
            elist[counter[i]++] = e;
        }
    }

    simple_csr(const std::vector<std::vector<E>>& es)
        : start(es.size() + 1, 0) {
        int n = es.size();
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] = (int)es[i].size() + start[i];
        }
        elist.resize(start.back());
        for (auto i : std::views::iota(0, n)) {
            std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
        }
    }

    int size() const {
        return (int)start.size() - 1;
    }

    const auto operator[](int i) const {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }
    auto operator[](int i) {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }

    const auto operator()(int i, int l, int r) const {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }
    auto operator()(int i, int l, int r) {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }

  private:
    std::vector<int> start;
    std::vector<E> elist;
};

}  // namespace ebi
#line 9 "graph/base.hpp"

namespace ebi {

template <class T> struct Edge {
    int from, to;
    T cost;
    int id;
};

template <class E> struct Graph {
    using cost_type = E;
    using edge_type = Edge<cost_type>;

    Graph(int n_) : n(n_) {}

    Graph() = default;

    void add_edge(int u, int v, cost_type c) {
        buff.emplace_back(u, edge_type{u, v, c, m});
        edges.emplace_back(edge_type{u, v, c, m++});
    }

    void add_undirected_edge(int u, int v, cost_type c) {
        buff.emplace_back(u, edge_type{u, v, c, m});
        buff.emplace_back(v, edge_type{v, u, c, m});
        edges.emplace_back(edge_type{u, v, c, m});
        m++;
    }

    void read_tree(int offset = 1, bool is_weighted = false) {
        read_graph(n - 1, offset, false, is_weighted);
    }

    void read_parents(int offset = 1) {
        for (auto i : std::views::iota(1, n)) {
            int p;
            std::cin >> p;
            p -= offset;
            add_undirected_edge(p, i, 1);
        }
        build();
    }

    void read_graph(int e, int offset = 1, bool is_directed = false,
                    bool is_weighted = false) {
        for (int i = 0; i < e; i++) {
            int u, v;
            std::cin >> u >> v;
            u -= offset;
            v -= offset;
            if (is_weighted) {
                cost_type c;
                std::cin >> c;
                if (is_directed) {
                    add_edge(u, v, c);
                } else {
                    add_undirected_edge(u, v, c);
                }
            } else {
                if (is_directed) {
                    add_edge(u, v, 1);
                } else {
                    add_undirected_edge(u, v, 1);
                }
            }
        }
        build();
    }

    void build() {
        assert(!prepared);
        csr = simple_csr<edge_type>(n, buff);
        buff.clear();
        prepared = true;
    }

    int size() const {
        return n;
    }

    int node_number() const {
        return n;
    }

    int edge_number() const {
        return m;
    }

    edge_type get_edge(int i) const {
        return edges[i];
    }

    std::vector<edge_type> get_edges() const {
        return edges;
    }

    const auto operator[](int i) const {
        return csr[i];
    }
    auto operator[](int i) {
        return csr[i];
    }

  private:
    int n, m = 0;

    std::vector<std::pair<int,edge_type>> buff;

    std::vector<edge_type> edges;
    simple_csr<edge_type> csr;
    bool prepared = false;
};

}  // namespace ebi
#line 8 "template/utility.hpp"

namespace ebi {

template <class T> inline bool chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}

template <class T> inline bool chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

template <class T> T safe_ceil(T a, T b) {
    if (a % b == 0)
        return a / b;
    else if (a >= 0)
        return (a / b) + 1;
    else
        return -((-a) / b);
}

template <class T> T safe_floor(T a, T b) {
    if (a % b == 0)
        return a / b;
    else if (a >= 0)
        return a / b;
    else
        return -((-a) / b) - 1;
}

constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;

constexpr int INF = std::numeric_limits<int>::max() / 2;

const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};

}  // namespace ebi
#line 6 "a.cpp"

namespace ebi {

template <Modint mint>
FormalPowerSeries<mint> &FormalPowerSeries<mint>::operator*=(
    const FormalPowerSeries<mint> &rhs) {
    *this = convolution_naive(*this, rhs);
    return *this;
}

template <Modint mint> void FormalPowerSeries<mint>::fft() {
    assert(false);
}

template <Modint mint> void FormalPowerSeries<mint>::ifft() {
    assert(false);
}

}  // namespace ebi

namespace ebi {

using mint = modint1000000007;

void main_() {
    int k, m;
    i64 n;
    std::cin >> k >> m >> n;
    const int sz = k * k;
    std::vector<std::pair<int, int>> a;
    rep(i, 0, m) {
        int p, q, r;
        std::cin >> p >> q >> r;
        p--;
        q--;
        r--;
        a.emplace_back(q + r * k, p + q * k);
    }
    std::sort(all(a));
    a.erase(std::unique(all(a)), a.end());
    auto Ax = [&](const std::vector<mint> &b) -> std::vector<mint> {
        std::vector<mint> res(sz, 0);
        for (auto [i, j] : a) {
            res[i] += b[j];
        }
        return res;
    };
    std::vector<mint> b(sz, 0);
    rep(i, 0, k) {
        b[i * k] = 1;
    }
    auto res = pow<mint>(sz, Ax, b, n - 2);
    mint ans = 0;
    rep(i, 0, k) {
        ans += res[i];
    }
    std::cout << ans << '\n';
}

}  // namespace ebi

int main() {
    ebi::fast_io();
    int t = 1;
    // std::cin >> t;
    while (t--) {
        ebi::main_();
    }
    return 0;
}
0