結果
| 問題 |
No.2798 Multiple Chain
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2024-06-28 21:48:58 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 5 ms / 2,000 ms |
| コード長 | 5,739 bytes |
| コンパイル時間 | 3,548 ms |
| コンパイル使用メモリ | 272,272 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-06-28 21:49:06 |
| 合計ジャッジ時間 | 4,795 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 51 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
// https://github.com/ei1333/library/blob/7da7fca8cebc1d17a048c9483f07e39c8e465cdf/math/number-theory/fast-prime-factorization.hpp
namespace FastPrimeFactorization {
template <typename word, typename dword, typename sword>
struct UnsafeMod {
UnsafeMod() : x(0) {}
UnsafeMod(word _x) : x(init(_x)) {}
bool operator==(const UnsafeMod &rhs) const { return x == rhs.x; }
bool operator!=(const UnsafeMod &rhs) const { return x != rhs.x; }
UnsafeMod &operator+=(const UnsafeMod &rhs) {
if ((x += rhs.x) >= mod) x -= mod;
return *this;
}
UnsafeMod &operator-=(const UnsafeMod &rhs) {
if (sword(x -= rhs.x) < 0) x += mod;
return *this;
}
UnsafeMod &operator*=(const UnsafeMod &rhs) {
x = reduce(dword(x) * rhs.x);
return *this;
}
UnsafeMod operator+(const UnsafeMod &rhs) const {
return UnsafeMod(*this) += rhs;
}
UnsafeMod operator-(const UnsafeMod &rhs) const {
return UnsafeMod(*this) -= rhs;
}
UnsafeMod operator*(const UnsafeMod &rhs) const {
return UnsafeMod(*this) *= rhs;
}
UnsafeMod pow(uint64_t e) const {
UnsafeMod ret(1);
for (UnsafeMod base = *this; e; e >>= 1, base *= base) {
if (e & 1) ret *= base;
}
return ret;
}
word get() const { return reduce(x); }
static constexpr int word_bits = sizeof(word) * 8;
static word modulus() { return mod; }
static word init(word w) { return reduce(dword(w) * r2); }
static void set_mod(word m) {
mod = m;
inv = mul_inv(mod);
r2 = -dword(mod) % mod;
}
static word reduce(dword x) {
word y =
word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits);
return sword(y) < 0 ? y + mod : y;
}
static word mul_inv(word n, int e = 6, word x = 1) {
return !e ? x : mul_inv(n, e - 1, x * (2 - x * n));
}
static word mod, inv, r2;
word x;
};
using uint128_t = __uint128_t;
using Mod64 = UnsafeMod<uint64_t, uint128_t, int64_t>;
template <>
uint64_t Mod64::mod = 0;
template <>
uint64_t Mod64::inv = 0;
template <>
uint64_t Mod64::r2 = 0;
using Mod32 = UnsafeMod<uint32_t, uint64_t, int32_t>;
template <>
uint32_t Mod32::mod = 0;
template <>
uint32_t Mod32::inv = 0;
template <>
uint32_t Mod32::r2 = 0;
bool miller_rabin_primality_test_uint64(uint64_t n) {
Mod64::set_mod(n);
uint64_t d = n - 1;
while (d % 2 == 0) d /= 2;
Mod64 e{1}, rev{n - 1};
// http://miller-rabin.appspot.com/ < 2^64
for (uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (n <= a) break;
uint64_t t = d;
Mod64 y = Mod64(a).pow(t);
while (t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool miller_rabin_primality_test_uint32(uint32_t n) {
Mod32::set_mod(n);
uint32_t d = n - 1;
while (d % 2 == 0) d /= 2;
Mod32 e{1}, rev{n - 1};
for (uint32_t a : {2, 7, 61}) {
if (n <= a) break;
uint32_t t = d;
Mod32 y = Mod32(a).pow(t);
while (t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool is_prime(uint64_t n) {
if (n == 2) return true;
if (n == 1 || n % 2 == 0) return false;
if (n < uint64_t(1) << 31) return miller_rabin_primality_test_uint32(n);
return miller_rabin_primality_test_uint64(n);
}
uint64_t pollard_rho(uint64_t n) {
if (is_prime(n)) return n;
if (n % 2 == 0) return 2;
Mod64::set_mod(n);
uint64_t d;
Mod64 one{1};
for (Mod64 c{one};; c += one) {
Mod64 x{2}, y{2};
do {
x = x * x + c;
y = y * y + c;
y = y * y + c;
d = __gcd((x - y).get(), n);
} while (d == 1);
if (d < n) return d;
}
assert(0);
}
vector<uint64_t> prime_factor(uint64_t n) {
if (n <= 1) return {};
uint64_t p = pollard_rho(n);
if (p == n) return {p};
auto l = prime_factor(p);
auto r = prime_factor(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
}; // namespace FastPrimeFactorization
int main() {
ll n; cin >> n;
map<int, int> pf;
for (const ll p : FastPrimeFactorization::prime_factor(n)) ++pf[p];
ll ans = 0;
for (int l = ranges::max(pf | views::values); l >= 1; --l) {
array<ll, 2> ways{1, 0};
for (const int num : pf | views::values) {
vector dp(num + 1, vector(num + 1, 0LL));
FOR(i, 1, num + 1) dp[num - i][i] = 1;
for (int pos = l - 2; pos >= 0; --pos) {
vector nxt(num + 1, vector(num + 1, 0LL));
REP(i, num + 1) for (int j = 0; i + j <= num; ++j) {
if (dp[i][j] == 0) continue;
for (int k = 0; k <= i && k <= j; ++k) {
nxt[i - k][k] += dp[i][j];
}
}
dp.swap(nxt);
}
array<ll, 2> tmp{};
REP(x, 2) REP(j, num + 1) tmp[x | j >= 1] += ways[x] * dp[0][j];
ways.swap(tmp);
}
ans += ways[true];
}
cout << ans << '\n';
return 0;
}
emthrm