結果
問題 | No.2798 Multiple Chain |
ユーザー | 👑 emthrm |
提出日時 | 2024-06-28 21:48:58 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 5 ms / 2,000 ms |
コード長 | 5,739 bytes |
コンパイル時間 | 3,548 ms |
コンパイル使用メモリ | 272,272 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-28 21:49:06 |
合計ジャッジ時間 | 4,795 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 3 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 3 ms
5,376 KB |
testcase_14 | AC | 4 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 3 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 3 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 3 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 5 ms
5,376 KB |
testcase_33 | AC | 3 ms
5,376 KB |
testcase_34 | AC | 5 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 3 ms
5,376 KB |
testcase_37 | AC | 3 ms
5,376 KB |
testcase_38 | AC | 3 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
testcase_42 | AC | 3 ms
5,376 KB |
testcase_43 | AC | 3 ms
5,376 KB |
testcase_44 | AC | 2 ms
5,376 KB |
testcase_45 | AC | 2 ms
5,376 KB |
testcase_46 | AC | 2 ms
5,376 KB |
testcase_47 | AC | 2 ms
5,376 KB |
testcase_48 | AC | 2 ms
5,376 KB |
testcase_49 | AC | 2 ms
5,376 KB |
testcase_50 | AC | 2 ms
5,376 KB |
testcase_51 | AC | 2 ms
5,376 KB |
testcase_52 | AC | 3 ms
5,376 KB |
testcase_53 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; // https://github.com/ei1333/library/blob/7da7fca8cebc1d17a048c9483f07e39c8e465cdf/math/number-theory/fast-prime-factorization.hpp namespace FastPrimeFactorization { template <typename word, typename dword, typename sword> struct UnsafeMod { UnsafeMod() : x(0) {} UnsafeMod(word _x) : x(init(_x)) {} bool operator==(const UnsafeMod &rhs) const { return x == rhs.x; } bool operator!=(const UnsafeMod &rhs) const { return x != rhs.x; } UnsafeMod &operator+=(const UnsafeMod &rhs) { if ((x += rhs.x) >= mod) x -= mod; return *this; } UnsafeMod &operator-=(const UnsafeMod &rhs) { if (sword(x -= rhs.x) < 0) x += mod; return *this; } UnsafeMod &operator*=(const UnsafeMod &rhs) { x = reduce(dword(x) * rhs.x); return *this; } UnsafeMod operator+(const UnsafeMod &rhs) const { return UnsafeMod(*this) += rhs; } UnsafeMod operator-(const UnsafeMod &rhs) const { return UnsafeMod(*this) -= rhs; } UnsafeMod operator*(const UnsafeMod &rhs) const { return UnsafeMod(*this) *= rhs; } UnsafeMod pow(uint64_t e) const { UnsafeMod ret(1); for (UnsafeMod base = *this; e; e >>= 1, base *= base) { if (e & 1) ret *= base; } return ret; } word get() const { return reduce(x); } static constexpr int word_bits = sizeof(word) * 8; static word modulus() { return mod; } static word init(word w) { return reduce(dword(w) * r2); } static void set_mod(word m) { mod = m; inv = mul_inv(mod); r2 = -dword(mod) % mod; } static word reduce(dword x) { word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits); return sword(y) < 0 ? y + mod : y; } static word mul_inv(word n, int e = 6, word x = 1) { return !e ? x : mul_inv(n, e - 1, x * (2 - x * n)); } static word mod, inv, r2; word x; }; using uint128_t = __uint128_t; using Mod64 = UnsafeMod<uint64_t, uint128_t, int64_t>; template <> uint64_t Mod64::mod = 0; template <> uint64_t Mod64::inv = 0; template <> uint64_t Mod64::r2 = 0; using Mod32 = UnsafeMod<uint32_t, uint64_t, int32_t>; template <> uint32_t Mod32::mod = 0; template <> uint32_t Mod32::inv = 0; template <> uint32_t Mod32::r2 = 0; bool miller_rabin_primality_test_uint64(uint64_t n) { Mod64::set_mod(n); uint64_t d = n - 1; while (d % 2 == 0) d /= 2; Mod64 e{1}, rev{n - 1}; // http://miller-rabin.appspot.com/ < 2^64 for (uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (n <= a) break; uint64_t t = d; Mod64 y = Mod64(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool miller_rabin_primality_test_uint32(uint32_t n) { Mod32::set_mod(n); uint32_t d = n - 1; while (d % 2 == 0) d /= 2; Mod32 e{1}, rev{n - 1}; for (uint32_t a : {2, 7, 61}) { if (n <= a) break; uint32_t t = d; Mod32 y = Mod32(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(uint64_t n) { if (n == 2) return true; if (n == 1 || n % 2 == 0) return false; if (n < uint64_t(1) << 31) return miller_rabin_primality_test_uint32(n); return miller_rabin_primality_test_uint64(n); } uint64_t pollard_rho(uint64_t n) { if (is_prime(n)) return n; if (n % 2 == 0) return 2; Mod64::set_mod(n); uint64_t d; Mod64 one{1}; for (Mod64 c{one};; c += one) { Mod64 x{2}, y{2}; do { x = x * x + c; y = y * y + c; y = y * y + c; d = __gcd((x - y).get(), n); } while (d == 1); if (d < n) return d; } assert(0); } vector<uint64_t> prime_factor(uint64_t n) { if (n <= 1) return {}; uint64_t p = pollard_rho(n); if (p == n) return {p}; auto l = prime_factor(p); auto r = prime_factor(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } }; // namespace FastPrimeFactorization int main() { ll n; cin >> n; map<int, int> pf; for (const ll p : FastPrimeFactorization::prime_factor(n)) ++pf[p]; ll ans = 0; for (int l = ranges::max(pf | views::values); l >= 1; --l) { array<ll, 2> ways{1, 0}; for (const int num : pf | views::values) { vector dp(num + 1, vector(num + 1, 0LL)); FOR(i, 1, num + 1) dp[num - i][i] = 1; for (int pos = l - 2; pos >= 0; --pos) { vector nxt(num + 1, vector(num + 1, 0LL)); REP(i, num + 1) for (int j = 0; i + j <= num; ++j) { if (dp[i][j] == 0) continue; for (int k = 0; k <= i && k <= j; ++k) { nxt[i - k][k] += dp[i][j]; } } dp.swap(nxt); } array<ll, 2> tmp{}; REP(x, 2) REP(j, num + 1) tmp[x | j >= 1] += ways[x] * dp[0][j]; ways.swap(tmp); } ans += ways[true]; } cout << ans << '\n'; return 0; }