結果

問題 No.2763 Macaron Gift Box
ユーザー PNJPNJ
提出日時 2024-07-14 01:53:42
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,076 ms / 3,000 ms
コード長 8,946 bytes
コンパイル時間 595 ms
コンパイル使用メモリ 82,132 KB
実行使用メモリ 127,664 KB
最終ジャッジ日時 2024-07-14 01:53:55
合計ジャッジ時間 9,684 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 78 ms
69,216 KB
testcase_01 AC 80 ms
69,008 KB
testcase_02 AC 79 ms
69,184 KB
testcase_03 AC 80 ms
68,748 KB
testcase_04 AC 78 ms
69,316 KB
testcase_05 AC 82 ms
69,752 KB
testcase_06 AC 108 ms
68,684 KB
testcase_07 AC 591 ms
103,884 KB
testcase_08 AC 244 ms
89,004 KB
testcase_09 AC 379 ms
93,572 KB
testcase_10 AC 1,019 ms
123,964 KB
testcase_11 AC 1,032 ms
123,812 KB
testcase_12 AC 1,076 ms
126,936 KB
testcase_13 AC 1,055 ms
127,664 KB
testcase_14 AC 247 ms
88,888 KB
testcase_15 AC 274 ms
89,112 KB
testcase_16 AC 247 ms
89,136 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

mod = 998244353
imag = 911660635
iimag = 86583718
rate2 = (0, 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899, 0)
irate2 = (0, 86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235, 0)
rate3 = (0, 372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204, 0)
irate3 = (0, 509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681, 0)

def fft(a):
    n = len(a)
    h = (n - 1).bit_length()
    le = 0
    while le < h:
        if h == le + 1:
            p = 1
            rot = 1
            for s in range(1 << le):
                offset = s << (h - le)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p] * rot
                    a[i + offset] = (l + r) % mod
                    a[i + offset + p] = (l - r) % mod
                rot *= rate2[(~s & -~s).bit_length()]
                rot %= mod
            le += 1
        else:
            p = 1 << (h - le - 2)
            rot = 1
            for s in range(1 << le):
                rot2 = rot * rot % mod
                rot3 = rot2 * rot % mod
                offset = s << (h - le)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p] * rot
                    a2 = a[i + offset + p * 2] * rot2
                    a3 = a[i + offset + p * 3] * rot3
                    a1na3imag = (a1 - a3) % mod * imag
                    a[i + offset] = (a0 + a2 + a1 + a3) % mod
                    a[i + offset + p] = (a0 + a2 - a1 - a3) % mod
                    a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % mod
                    a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % mod
                rot *= rate3[(~s & -~s).bit_length()]
                rot %= mod
            le += 2

def fft_inv(a):
    n = len(a)
    h = (n - 1).bit_length()
    le = h
    while le:
        if le == 1:
            p = 1 << (h - le)
            irot = 1
            for s in range(1 << (le - 1)):
                offset = s << (h - le + 1)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p]
                    a[i + offset] = (l + r) % mod
                    a[i + offset + p] = (l - r) * irot % mod
                irot *= irate2[(~s & -~s).bit_length()]
                irot %= mod
            le -= 1
        else:
            p = 1 << (h - le)
            irot = 1
            for s in range(1 << (le - 2)):
                irot2 = irot * irot % mod
                irot3 = irot2 * irot % mod
                offset = s << (h - le + 2)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p]
                    a2 = a[i + offset + p * 2]
                    a3 = a[i + offset + p * 3]
                    a2na3iimag = (a2 - a3) * iimag % mod
                    a[i + offset] = (a0 + a1 + a2 + a3) % mod
                    a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % mod
                    a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % mod
                    a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % mod
                irot *= irate3[(~s & -~s).bit_length()]
                irot %= mod
            le -= 2

def ntt(a):
    if len(a) <= 1:
        return
    fft(a)

def ntt_inv(a):
    if len(a) <= 1:
        return
    fft_inv(a)
    iv = pow(len(a),mod-2,mod)
    for i in range(len(a)):
        a[i] = a[i] * iv % mod

def convolute(a,b):
    aa = a[:]
    bb = b[:]
    n = len(aa)
    m = len(bb)
    z = 1 << (n + m - 2).bit_length()
    aa += [0] * (z - n)
    bb += [0] * (z - m)
    fft(aa)
    fft(bb)
    for i in range(z):
        aa[i] = aa[i] * bb[i] % mod
    fft_inv(aa)
    aa = aa[:n + m - 1]
    iz = pow(z, mod - 2, mod)
    for i in range(n+m-1):
        aa[i] = (aa[i] * iz) % mod
    return aa

def fps_inv(f,deg = -1):
    assert (f[0] != 0)
    if deg == -1:
        deg = len(f)
    res = [0] * deg
    res[0] = pow(f[0],mod-2,mod)
    d = 1
    while d < deg:
        a = [0] * (d << 1)
        tmp = min(len(f),d << 1)
        a[:tmp] = f[:tmp]
        b = [0] * (d << 1)
        b[:d] = res[:d]
        ntt(a)
        ntt(b)
        for i in range(d << 1):
            a[i] = a[i] * b[i] % mod
        ntt_inv(a)
        a[:d] = [0] * d
        ntt(a)
        for i in range(d << 1):
            a[i] = a[i] * b[i] % mod
        ntt_inv(a)
        for j in range(d,min(d << 1,deg)):
            if a[j]:
                res[j] = mod - a[j]
            else:
                res[j] = 0
        d <<= 1
    return res

def fps_div(f,g):
    n,m = len(f),len(g)
    if n < m:
        return [],f
    rev_f = f[:]
    rev_f = rev_f[::-1]
    rev_g = g[:]
    rev_g = rev_g[::-1]
    rev_q = convolute(rev_f,fps_inv(rev_g,n-m+1))[:n-m+1]
    q = rev_q[:]
    q = q[::-1]
    p = convolute(g,q)
    r = f[:]
    for i in range(min(len(p),len(r))):
        r[i] -= p[i]
        r[i] %= mod
    while len(r):
        if r[-1] != 0:
            break
        r.pop()
    return q,r

def fps_diff(f):
    res = []
    for i in range(1,len(f)):
        res.append(i * f[i] % mod)
    return res

def fps_integrate(f):
    n = len(f)
    res = [0] * (n + 1)
    for i in range(n):
        res[i+1] = pow(i + 1,mod-2,mod) * f[i] % mod
    return res

def fps_log(f,deg = -1):
    assert (f[0] != 0)
    if deg == -1:
        deg = len(f)
    c = f[0]
    if c != 1:
        cc = pow(c,mod - 2,mod)
        for i in range(len(f)):
            f[i] = f[i] * cc % mod
    res = convolute(fps_diff(f),fps_inv(f,deg))
    res = fps_integrate(res)
    if c != 1:
        for i in range(deg):
            f[i] = f[i] * c % mod
    return res[:deg]

def fps_exp(f,deg = -1):
    assert (f[0] == 0)
    if deg == -1:
        deg = len(f)
    res = [1,0]
    if len(f) > 1:
        res[1] = f[1]
    g = [1]
    p = []
    q = [1,1]
    m = 2
    while m < deg:
        y = res + [0]*m
        ntt(y)
        p = q[:]
        z = [y[i] * p[i] for i in range(len(p))]
        ntt_inv(z)
        z[:m >> 1] = [0] * (m >> 1)
        ntt(z)
        for i in range(len(p)):
            z[i] = z[i] * (-p[i]) % mod
        ntt_inv(z)
        g[m >> 1:] = z[m >> 1:]
        q = g + [0] * m
        ntt(q)
        tmp = min(len(f),m)
        x = f[:tmp] + [0] * (m - tmp)
        x = fps_diff(x)
        x.append(0)
        ntt(x)
        for i in range(len(x)):
            x[i] = x[i] * y[i] % mod
        ntt_inv(x)
        for i in range(len(res)):
            if i == 0:
                continue
            x[i-1] -= res[i] * i % mod
        x += [0] * m
        for i in range(m-1):
            x[m+i],x[i] = x[i],0
        ntt(x)
        for i in range(len(q)):
            x[i] = x[i] * q[i] % mod
        ntt_inv(x)
        x.pop()
        x = fps_integrate(x)
        x[:m] = [0] * m
        for i in range(m,min(len(f),m << 1)):
            x[i] += f[i]
        ntt(x)
        for i in range(len(y)):
            x[i] = x[i] * y[i] % mod
        ntt_inv(x)
        res[m:] = x[m:]
        m <<= 1
    return res[:deg]

def fps_pow(f,k,deg = -1):
    if k == 0:
        return [1] + [0] * (len(f) - 1)
    p = 0
    if deg == -1:
        deg = len(f)
    while p < deg:
        if f[p]:
            break
        p += 1
    if p == deg:
            return [0] * len(f)
    a = f[p]
    a_inv = pow(a,mod-2,mod)
    a = pow(a,k,mod)
    f = f[p:]
    for i in range(deg-p):
        f[i] = f[i] * a_inv % mod
    g = fps_log(f,deg)
    for i in range(deg-p):
        g[i] = g[i] * k % mod
    g = fps_exp(g,deg)
    res = [0] * deg
    for i in range(deg):
        j = i + p*k
        if j >= deg:
            break
        res[j] = g[i] * a % mod
    return res

n = 10**6
inv = [1 for j in range(n+1)]
for a in range(2,n+1):
  # ax + py = 1 <=> rx + p(-x-qy) = -q => x = -(inv[r]) * (p//a)  (r = p % a)
  res = (mod - inv[mod%a]) * (mod // a)
  inv[a] = res % mod

N,K = map(int,input().split())
L = [0 for i in range(N+1)]
for i in range(1,N+1):
  for j in range(1,N+1):
    if i*j > N:
      break
    L[i*j] += inv[j]
    L[i*j] %= mod
  k = (K + 1) * i
  for j in range(1,N+1):
    if k*j > N:
      break
    L[k*j] -= inv[j]
    L[k*j] %= mod
f = fps_exp(L)
print(*f[1:(N+1)])
0