結果
| 問題 |
No.2713 Just Solitaire
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-07-24 13:07:07 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 4,482 bytes |
| コンパイル時間 | 2,415 ms |
| コンパイル使用メモリ | 198,352 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-07-24 13:07:14 |
| 合計ジャッジ時間 | 5,843 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 16 RE * 16 |
ソースコード
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using i128 = __int128_t;
#define LINF 9223372036854775807
#define rep(i, x, limit) for (ll i = (ll)x; i < (ll)limit; i++)
// Dinic's algorithm for maximum flow
// Complexity: O(V^2E) for general graph, O(min(V^(2/3), E^(1/2))E) for unit
template <typename flow_t>
struct Dinic
{
const flow_t INF;
struct edge
{
int to;
flow_t cap;
int rev;
bool isrev;
int idx;
};
vector<vector<edge>> graph;
vector<int> min_cost, iter;
// V: the number of vertices
explicit Dinic(int V) : INF(numeric_limits<flow_t>::max()), graph(V) {}
// fromからtoへの容量capの辺をグラフに追加する
void add_edge(int from, int to, flow_t cap, int idx = -1)
{
graph[from].emplace_back(
(edge){to, cap, (int)graph[to].size(), false, idx});
graph[to].emplace_back(
(edge){from, 0, (int)graph[from].size() - 1, true, idx});
}
bool build_augment_path(int s, int t)
{
min_cost.assign(graph.size(), -1);
queue<int> que;
min_cost[s] = 0;
que.push(s);
while (!que.empty() && min_cost[t] == -1)
{
int p = que.front();
que.pop();
for (auto &e : graph[p])
{
if (e.cap > 0 && min_cost[e.to] == -1)
{
min_cost[e.to] = min_cost[p] + 1;
que.push(e.to);
}
}
}
return min_cost[t] != -1;
}
flow_t find_min_dist_augment_path(int idx, const int t, flow_t flow)
{
if (idx == t)
return flow;
for (int &i = iter[idx]; i < (int)graph[idx].size(); i++)
{
edge &e = graph[idx][i];
if (e.cap > 0 && min_cost[idx] < min_cost[e.to])
{
flow_t d = find_min_dist_augment_path(e.to, t, min(flow, e.cap));
if (d > 0)
{
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
// sからtへの最大流を求め, その値を返す
flow_t max_flow(int s, int t)
{
flow_t flow = 0;
while (build_augment_path(s, t))
{
iter.assign(graph.size(), 0);
flow_t f;
while ((f = find_min_dist_augment_path(s, t, INF)) > 0)
flow += f;
}
return flow;
}
void output()
{
for (int i = 0; i < graph.size(); i++)
{
for (auto &e : graph[i])
{
if (e.isrev)
continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/"
<< e.cap + rev_e.cap << ")" << endl;
}
}
}
vector<bool> min_cut(int s)
{
vector<bool> used(graph.size());
queue<int> que;
que.emplace(s);
used[s] = true;
while (not que.empty())
{
int p = que.front();
que.pop();
for (auto &e : graph[p])
{
if (e.cap > 0 and not used[e.to])
{
used[e.to] = true;
que.emplace(e.to);
cout << p << " " << e.to << endl;
}
}
}
return used;
}
};
int main()
{
ll n, m;
cin >> n >> m;
vector<ll> a(n), b(m);
rep(i, 0, n) cin >> a[i];
rep(i, 0, m) cin >> b[i];
vector<vector<ll>> c(n);
rep(i, 0, m)
{
ll k;
cin >> k;
rep(j, 0, k)
{
ll x;
cin >> x;
x--;
c[i].push_back(x);
}
}
Dinic<ll> dinic(n + m + 2);
ll s = n + m, t = n + m + 1;
ll sum = 0;
rep(i, 0, n)
{
dinic.add_edge(i, t, a[i]);
sum += 0;
}
rep(i, 0, m)
{
sum -= b[i];
dinic.add_edge(s, i + n, b[i]);
for (auto x : c[i]) // ボーナスiの中身
{
dinic.add_edge(i + n, x, LINF);
}
}
cout << -(sum + dinic.max_flow(s, t)) << endl;
}