結果
| 問題 | No.2833 Count Taiko Results |
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2024-08-02 22:19:14 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 373 ms / 2,000 ms |
| コード長 | 15,803 bytes |
| コンパイル時間 | 3,233 ms |
| コンパイル使用メモリ | 257,052 KB |
| 実行使用メモリ | 11,784 KB |
| 最終ジャッジ日時 | 2024-08-02 22:19:27 |
| 合計ジャッジ時間 | 12,378 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 58 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <unsigned int M>
struct MInt {
unsigned int v;
constexpr MInt() : v(0) {}
constexpr MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr MInt raw(const int x) {
MInt x_;
x_.v = x;
return x_;
}
static constexpr int get_mod() { return M; }
static constexpr void set_mod(const int divisor) {
assert(std::cmp_equal(divisor, M));
}
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// assert(0 <= n && n < M && std::gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
if constexpr (MEMOIZES) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * raw(M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
if (const int prev = factorial.size(); n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
if (const int prev = f_inv.size(); n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
constexpr MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
constexpr MInt& operator+=(const MInt& x) {
if ((v += x.v) >= M) v -= M;
return *this;
}
constexpr MInt& operator-=(const MInt& x) {
if ((v += M - x.v) >= M) v -= M;
return *this;
}
constexpr MInt& operator*=(const MInt& x) {
v = (unsigned long long){v} * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
constexpr auto operator<=>(const MInt& x) const = default;
constexpr MInt& operator++() {
if (++v == M) [[unlikely]] v = 0;
return *this;
}
constexpr MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
constexpr MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
constexpr MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
constexpr MInt operator+() const { return *this; }
constexpr MInt operator-() const { return raw(v ? M - v : 0); }
constexpr MInt operator+(const MInt& x) const { return MInt(*this) += x; }
constexpr MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
constexpr MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
template <typename T>
requires requires {
typename T::Monoid;
typename T::OperatorMonoid;
{T::m_id()} -> std::same_as<typename T::Monoid>;
{T::o_id()} -> std::same_as<typename T::OperatorMonoid>;
{T::m_merge(std::declval<typename T::Monoid>(),
std::declval<typename T::Monoid>())}
-> std::same_as<typename T::Monoid>;
{T::o_merge(std::declval<typename T::OperatorMonoid>(),
std::declval<typename T::OperatorMonoid>())}
-> std::same_as<typename T::OperatorMonoid>;
{T::apply(std::declval<typename T::Monoid>(),
std::declval<typename T::OperatorMonoid>())}
-> std::same_as<typename T::Monoid>;
}
struct LazySegmentTree {
using Monoid = typename T::Monoid;
using OperatorMonoid = typename T::OperatorMonoid;
explicit LazySegmentTree(const int n)
: LazySegmentTree(std::vector<Monoid>(n, T::m_id())) {}
explicit LazySegmentTree(const std::vector<Monoid>& a)
: n(a.size()), height(std::countr_zero(std::bit_ceil(a.size()))),
p2(1 << height) {
lazy.assign(p2, T::o_id());
data.assign(p2 << 1, T::m_id());
std::copy(a.begin(), a.end(), data.begin() + p2);
for (int i = p2 - 1; i > 0; --i) {
data[i] = T::m_merge(data[i << 1], data[(i << 1) + 1]);
}
}
void set(int idx, const Monoid val) {
idx += p2;
for (int i = height; i > 0; --i) {
propagate(idx >> i);
}
data[idx] = val;
for (int i = 1; i <= height; ++i) {
const int current_idx = idx >> i;
data[current_idx] =
T::m_merge(data[current_idx << 1], data[(current_idx << 1) + 1]);
}
}
void apply(int idx, const OperatorMonoid val) {
idx += p2;
for (int i = height; i > 0; --i) {
propagate(idx >> i);
}
data[idx] = T::apply(data[idx], val);
for (int i = 1; i <= height; ++i) {
const int current_idx = idx >> i;
data[current_idx] =
T::m_merge(data[current_idx << 1], data[(current_idx << 1) + 1]);
}
}
void apply(int left, int right, const OperatorMonoid val) {
if (right <= left) [[unlikely]] return;
left += p2;
right += p2;
const int ctz_left = std::countr_zero(static_cast<unsigned int>(left));
for (int i = height; i > ctz_left; --i) {
propagate(left >> i);
}
const int ctz_right = std::countr_zero(static_cast<unsigned int>(right));
for (int i = height; i > ctz_right; --i) {
propagate(right >> i);
}
for (int l = left, r = right; l < r; l >>= 1, r >>= 1) {
if (l & 1) apply_sub(l++, val);
if (r & 1) apply_sub(--r, val);
}
for (int i = left >> (ctz_left + 1); i > 0; i >>= 1) {
data[i] = T::m_merge(data[i << 1], data[(i << 1) + 1]);
}
for (int i = right >> (ctz_right + 1); i > 0; i >>= 1) {
data[i] = T::m_merge(data[i << 1], data[(i << 1) + 1]);
}
}
Monoid get(int left, int right) {
if (right <= left) [[unlikely]] return T::m_id();
left += p2;
right += p2;
const int ctz_left = std::countr_zero(static_cast<unsigned int>(left));
for (int i = height; i > ctz_left; --i) {
propagate(left >> i);
}
const int ctz_right = std::countr_zero(static_cast<unsigned int>(right));
for (int i = height; i > ctz_right; --i) {
propagate(right >> i);
}
Monoid res_l = T::m_id(), res_r = T::m_id();
for (; left < right; left >>= 1, right >>= 1) {
if (left & 1) res_l = T::m_merge(res_l, data[left++]);
if (right & 1) res_r = T::m_merge(data[--right], res_r);
}
return T::m_merge(res_l, res_r);
}
Monoid operator[](const int idx) {
const int node = idx + p2;
for (int i = height; i > 0; --i) {
propagate(node >> i);
}
return data[node];
}
template <typename G>
int find_right(int left, const G g) {
if (left >= n) [[unlikely]] return n;
left += p2;
for (int i = height; i > 0; --i) {
propagate(left >> i);
}
Monoid val = T::m_id();
do {
while (!(left & 1)) left >>= 1;
Monoid nxt = T::m_merge(val, data[left]);
if (!g(nxt)) {
while (left < p2) {
propagate(left);
left <<= 1;
nxt = T::m_merge(val, data[left]);
if (g(nxt)) {
val = nxt;
++left;
}
}
return left - p2;
}
val = nxt;
++left;
} while (!std::has_single_bit(static_cast<unsigned int>(left)));
return n;
}
template <typename G>
int find_left(int right, const G g) {
if (right <= 0) [[unlikely]] return -1;
right += p2;
for (int i = height; i > 0; --i) {
propagate((right - 1) >> i);
}
Monoid val = T::m_id();
do {
--right;
while (right > 1 && (right & 1)) right >>= 1;
Monoid nxt = T::m_merge(data[right], val);
if (!g(nxt)) {
while (right < p2) {
propagate(right);
right = (right << 1) + 1;
nxt = T::m_merge(data[right], val);
if (g(nxt)) {
val = nxt;
--right;
}
}
return right - p2;
}
val = nxt;
} while (!std::has_single_bit(static_cast<unsigned int>(right)));
return -1;
}
private:
const int n, height, p2;
std::vector<Monoid> data;
std::vector<OperatorMonoid> lazy;
void apply_sub(const int idx, const OperatorMonoid& val) {
data[idx] = T::apply(data[idx], val);
if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val);
}
void propagate(const int idx) {
// assert(1 <= idx && idx < p2);
apply_sub(idx << 1, lazy[idx]);
apply_sub((idx << 1) + 1, lazy[idx]);
lazy[idx] = T::o_id();
}
};
namespace monoid {
template <typename T>
struct RangeMinimumAndUpdateQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::max(); }
static constexpr OperatorMonoid o_id() {
return std::numeric_limits<OperatorMonoid>::max();
}
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::min(a, b);
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return b == o_id() ? a : b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return b == o_id() ? a : b;
}
};
template <typename T>
struct RangeMaximumAndUpdateQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() {
return std::numeric_limits<Monoid>::lowest();
}
static constexpr OperatorMonoid o_id() {
return std::numeric_limits<OperatorMonoid>::lowest();
}
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::max(a, b);
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return b == o_id() ? a : b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return b == o_id()? a : b;
}
};
template <typename T, T Inf>
struct RangeMinimumAndAddQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return Inf; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::min(a, b);
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return a + b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return a + b;
}
};
template <typename T, T Inf>
struct RangeMaximumAndAddQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return -Inf; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::max(a, b);
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return a + b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return a + b;
}
};
template <typename T>
struct RangeSumAndUpdateQuery {
using Monoid = struct { T sum; int len; };
using OperatorMonoid = T;
static std::vector<Monoid> init(const int n) {
return std::vector<Monoid>(n, Monoid{0, 1});
}
static constexpr Monoid m_id() { return {0, 0}; }
static constexpr OperatorMonoid o_id() {
return std::numeric_limits<OperatorMonoid>::max();
}
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return Monoid{a.sum + b.sum, a.len + b.len};
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return b == o_id() ? a : b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return Monoid{b == o_id() ? a.sum : b * a.len, a.len};
}
};
template <typename T>
struct RangeSumAndAddQuery {
using Monoid = struct { T sum; int len; };
using OperatorMonoid = T;
static std::vector<Monoid> init(const int n) {
return std::vector<Monoid>(n, Monoid{0, 1});
}
static constexpr Monoid m_id() { return {0, 0}; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return Monoid{a.sum + b.sum, a.len + b.len};
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return a + b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return Monoid{a.sum + b * a.len, a.len};
}
};
} // namespace monoid
int main() {
struct S {
using Monoid = ModInt;
using OperatorMonoid = ModInt;
static constexpr Monoid m_id() { return 0; }
static constexpr OperatorMonoid o_id() { return 1; }
static Monoid m_merge(const Monoid& a, const Monoid& b) { return a + b; }
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return a * b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return a * b;
}
};
int n, k; cin >> n >> k;
vector<int> a(n + 1), b(n + 1);
FOR(i, 1, n + 1) cin >> a[i];
FOR(i, 1, n + 1) cin >> b[i];
LazySegmentTree<S> dp0(n + 1), dp1(n + 1);
dp0.set(0, 1);
FOR(i, 1, n + 1) { // i番目に失敗
ModInt dp_i0 = 0, dp_i1 = 0;
dp_i0 += dp0.get(max(i - k, 0), i) * b[i]; // Kコンボ達成できない
if (i > k) dp_i1 += dp0[i - k - 1] * b[i]; // Kコンボ達成できる
dp_i1 += dp1.get(max(i - k - 1, 0), i) * b[i];
dp0.apply(0, i, a[i]);
dp1.apply(0, i, a[i]);
dp0.set(i, dp_i0);
dp1.set(i, dp_i1);
// REP(j, n + 1) cout << dp0[j] << " \n"[j == n];
// REP(j, n + 1) cout << dp1[j] << " \n"[j == n];
// cout << '\n';
}
cout << dp1.get(n - k, n + 1) + dp0[n - k] << '\n';
return 0;
}
emthrm