結果

問題 No.3006 ベイカーの問題
ユーザー MMRZ
提出日時 2025-01-17 22:41:29
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 5,003 bytes
コンパイル時間 3,668 ms
コンパイル使用メモリ 288,176 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2025-01-17 22:41:36
合計ジャッジ時間 4,788 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 20 WA * 4
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

# include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
const double pi = acos(-1);
template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T hinf() { return inf<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }
template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }
template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };
ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };
ll MOD(ll x, ll m){return (x%m+m)%m; }
ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }
template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;
# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())
# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)
# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)
# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)
# define len(x) ((ll)(x).size())
# define bit(n) (1LL << (n))
# define pb push_back
# define exists(c, e) ((c).find(e) != (c).end())
struct INIT{
INIT(){
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cout << fixed << setprecision(20);
}
}INIT;
namespace mmrz {
void solve();
}
int main(){
mmrz::solve();
}
#define debug(...) (static_cast<void>(0))
using namespace mmrz;
template <std::uint_fast64_t Modulus> class modint {
using u64 = std::uint_fast64_t;
public:
u64 a;
constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}
constexpr u64 &value() noexcept { return a; }
constexpr const u64 &value() const noexcept { return a; }
constexpr modint operator+(const modint rhs) const noexcept {
return modint(*this) += rhs;
}
constexpr modint operator-(const modint rhs) const noexcept {
return modint(*this) -= rhs;
}
constexpr modint operator*(const modint rhs) const noexcept {
return modint(*this) *= rhs;
}
constexpr modint operator/(const modint rhs) const noexcept {
return modint(*this) /= rhs;
}
constexpr modint &operator+=(const modint rhs) noexcept {
a += rhs.a;
if (a >= Modulus) {
a -= Modulus;
}
return *this;
}
constexpr modint &operator-=(const modint rhs) noexcept {
if (a < rhs.a) {
a += Modulus;
}
a -= rhs.a;
return *this;
}
constexpr modint &operator*=(const modint rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint &operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) {
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
friend std::ostream& operator<<(std::ostream& os, const modint& rhs) {
os << rhs.a;
return os;
}
};
using mint = modint<998244353>;
vector<vector<mint>> matrix_multiply(vector<vector<mint>> X, vector<vector<mint>> Y) {
vector<vector<mint>> Z(X.size(), vector<mint>(Y[0].size()));
rep(i, X.size()) {
rep(k, Y.size()) {
rep(j, Y[0].size()) {
Z[i][j] = (Z[i][j] + X[i][k] * Y[k][j]);
}
}
}
return Z;
}
//A^n
vector<vector<mint>> matrix_pow(vector<vector<mint>> A, ll n) {
vector<vector<mint>> B(A.size(), vector<mint>(A[0].size()));
//B
rep(i, B.size()) {
B[i][i] = 1;
}
while (n>0) {
if (n & 1) { B = matrix_multiply(B, A); }
A = matrix_multiply(A, A);
n = n >> 1;
}
return B;
}
void SOLVE(){
ll _x, _y, n;
cin >> _x >> _y >> n;
if(_x == 0 && _y == 0){
cout << 0 << " " << 0 << endl;
return;
}
if(n == 1){
cout << _x << " " << _y << endl;
return;
}
mint x = MOD(_x, 998244353), y = MOD(_y, 998244353);
vector<vector<mint>> I = {{1, 0}, {0, 1}};
vector<vector<mint>> xn = matrix_pow({{x, mint(998244353-5)*y}, {y, x}}, n);
vector<vector<mint>> l = {{I[0][0]-xn[0][0], I[0][1]-xn[0][1]}, {I[1][0]-xn[1][0], I[1][1]-xn[1][1]}};
vector<vector<mint>> r = {{I[0][0]-x, I[0][1]+mint(5)*y}, {I[1][0]-y, I[1][1]-x}};
vector<vector<mint>> r_inv = {{r[1][1], mint(998244353)-r[0][1]}, {mint(998244353)-r[1][0], r[0][0]}};
mint inv = mint(1) / (r[0][0]*r[1][1] - r[0][1]*r[1][0]);
rep(i, 2)rep(j, 2)r_inv[i][j] *= inv;
vector<vector<mint>> s = matrix_multiply(l, r_inv);
mint X = s[0][0]*x + s[0][1]*y;
mint Y = s[1][0]*x + s[1][1]*y;
cout << X << " " << Y << endl;
}
void mmrz::solve(){
int t = 1;
//cin >> t;
while(t--)SOLVE();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0