結果
問題 | No.3006 ベイカーの問題 |
ユーザー |
|
提出日時 | 2025-01-17 22:41:29 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,003 bytes |
コンパイル時間 | 3,668 ms |
コンパイル使用メモリ | 288,176 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2025-01-17 22:41:36 |
合計ジャッジ時間 | 4,788 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 20 WA * 4 |
ソースコード
# include <bits/stdc++.h>using namespace std;using ll = long long;using ull = unsigned long long;const double pi = acos(-1);template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }template<class T>constexpr T hinf() { return inf<T>() / 2; }template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };ll MOD(ll x, ll m){return (x%m+m)%m; }ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)# define len(x) ((ll)(x).size())# define bit(n) (1LL << (n))# define pb push_back# define exists(c, e) ((c).find(e) != (c).end())struct INIT{INIT(){std::ios::sync_with_stdio(false);std::cin.tie(0);cout << fixed << setprecision(20);}}INIT;namespace mmrz {void solve();}int main(){mmrz::solve();}#define debug(...) (static_cast<void>(0))using namespace mmrz;template <std::uint_fast64_t Modulus> class modint {using u64 = std::uint_fast64_t;public:u64 a;constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}constexpr u64 &value() noexcept { return a; }constexpr const u64 &value() const noexcept { return a; }constexpr modint operator+(const modint rhs) const noexcept {return modint(*this) += rhs;}constexpr modint operator-(const modint rhs) const noexcept {return modint(*this) -= rhs;}constexpr modint operator*(const modint rhs) const noexcept {return modint(*this) *= rhs;}constexpr modint operator/(const modint rhs) const noexcept {return modint(*this) /= rhs;}constexpr modint &operator+=(const modint rhs) noexcept {a += rhs.a;if (a >= Modulus) {a -= Modulus;}return *this;}constexpr modint &operator-=(const modint rhs) noexcept {if (a < rhs.a) {a += Modulus;}a -= rhs.a;return *this;}constexpr modint &operator*=(const modint rhs) noexcept {a = a * rhs.a % Modulus;return *this;}constexpr modint &operator/=(modint rhs) noexcept {u64 exp = Modulus - 2;while (exp) {if (exp % 2) {*this *= rhs;}rhs *= rhs;exp /= 2;}return *this;}friend std::ostream& operator<<(std::ostream& os, const modint& rhs) {os << rhs.a;return os;}};using mint = modint<998244353>;vector<vector<mint>> matrix_multiply(vector<vector<mint>> X, vector<vector<mint>> Y) {vector<vector<mint>> Z(X.size(), vector<mint>(Y[0].size()));rep(i, X.size()) {rep(k, Y.size()) {rep(j, Y[0].size()) {Z[i][j] = (Z[i][j] + X[i][k] * Y[k][j]);}}}return Z;}//A^nの計算vector<vector<mint>> matrix_pow(vector<vector<mint>> A, ll n) {vector<vector<mint>> B(A.size(), vector<mint>(A[0].size()));//単位行列でBを初期化rep(i, B.size()) {B[i][i] = 1;}while (n>0) {if (n & 1) { B = matrix_multiply(B, A); }A = matrix_multiply(A, A);n = n >> 1;}return B;}void SOLVE(){ll _x, _y, n;cin >> _x >> _y >> n;if(_x == 0 && _y == 0){cout << 0 << " " << 0 << endl;return;}if(n == 1){cout << _x << " " << _y << endl;return;}mint x = MOD(_x, 998244353), y = MOD(_y, 998244353);vector<vector<mint>> I = {{1, 0}, {0, 1}};vector<vector<mint>> xn = matrix_pow({{x, mint(998244353-5)*y}, {y, x}}, n);vector<vector<mint>> l = {{I[0][0]-xn[0][0], I[0][1]-xn[0][1]}, {I[1][0]-xn[1][0], I[1][1]-xn[1][1]}};vector<vector<mint>> r = {{I[0][0]-x, I[0][1]+mint(5)*y}, {I[1][0]-y, I[1][1]-x}};vector<vector<mint>> r_inv = {{r[1][1], mint(998244353)-r[0][1]}, {mint(998244353)-r[1][0], r[0][0]}};mint inv = mint(1) / (r[0][0]*r[1][1] - r[0][1]*r[1][0]);rep(i, 2)rep(j, 2)r_inv[i][j] *= inv;vector<vector<mint>> s = matrix_multiply(l, r_inv);mint X = s[0][0]*x + s[0][1]*y;mint Y = s[1][0]*x + s[1][1]*y;cout << X << " " << Y << endl;}void mmrz::solve(){int t = 1;//cin >> t;while(t--)SOLVE();}