結果

問題 No.3412 Christmas Tree Coloring
コンテスト
ユーザー ecottea
提出日時 2025-12-20 17:15:30
言語 C++17
(gcc 13.3.0 + boost 1.89.0)
結果
AC  
実行時間 443 ms / 2,000 ms
コード長 34,014 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 8,290 ms
コンパイル使用メモリ 342,636 KB
実行使用メモリ 22,720 KB
最終ジャッジ日時 2025-12-20 17:15:46
合計ジャッジ時間 14,864 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

using mint = modint998244353;
//using mint = static_modint<(int)1e9+7>;
//using mint = modint; // mint::set_mod(m);

using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
int mute_dump = 0;
int frac_print = 0;
#if __has_include(<atcoder/all>)
namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
#endif
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); rep(i,9)cout<<MLE[i]; } } // RE の代わりに MLE を出す
#endif


// n 頂点の森 g に対する愚直解を返す.
mint naive_forest(int n, Graph g) {
	// ------------------ 辺 (u[j]-v[j]) のリストに直す ------------------
	vi u, v;
	rep(s, n) repe(t, g[s]) {
		if (s < t) {
			u.push_back(s);
			v.push_back(t);
		}
	}
	int m = sz(u);
	// -------------------------------------------------------------------

	mint res = 0;

	rep(s, n) { // O(2^n n^2)
		repb(set, n) {
			if (getb(set, s)) continue;

			bool ok = true;
			rep(j, m) {
				if (u[j] == s) continue;
				if (v[j] == s) continue;
				if (getb(set, u[j]) == getb(set, v[j])) ok = false;
			}

			bool ex0 = false, ex1 = false;
			rep(t, n) {
				if (t == s) continue;
				if (!getb(set, t)) ex0 = true;
				if (getb(set, t)) ex1 = true;
			}

			if (ok && ex0 && ex1) res++;
		}
	}

	return res;
}


// 仮根 0 をもつ n 頂点の木 g に対する愚直解を返す.
mint naive_virtual_tree(int n, Graph g) {
	mint res = 0;

	// set : 黒で塗る頂点の集合
	repb(set, n) {
		// 根は黒で塗れないとする.
		if (getb(set, 0)) continue;

		bool ok = true;
		rep(s, n) repe(t, g[s]) if (getb(set, s) && getb(set, t)) ok = false;

		if (ok) res++;
	}

	return res;
}


// 頂点 0 を virtual な根とする木 par に対する愚直解を計算する.
// virtual な根を考えたくなければ,頂点 0 と接続辺を無視して森として扱えばいい.
mint naive(const vi& par) {
	// 森として扱う
	if (1) {
		int n = sz(par);
		Graph g(n);
		rep(i, n) {
			if (par[i] == 0) continue;

			g[i].push_back(par[i] - 1);
			g[par[i] - 1].push_back(i);
		}
		return naive_forest(n, g);
	}
	// 仮根をもつ木として扱う
	else {
		int n = sz(par) + 1;
		Graph g(n);
		rep(i, n - 1) {
			g[i + 1].push_back(par[i]);
			g[par[i]].push_back(i + 1);
		}
		return naive_virtual_tree(n, g);
	}
}


//【グラフの入力】O(n + m)
Graph read_Graph(int n, int m = -1, bool directed = false, bool zero_indexed = false) {
	Graph g(n);
	if (m == -1) m = n - 1;

	rep(j, m) {
		int a, b;
		cin >> a >> b;
		if (!zero_indexed) { --a; --b; }

		g[a].push_back(b);
		if (!directed && a != b) g[b].push_back(a);
	}

	return g;
}


// (グラフ, 根) を naive() への入力形式に直す.
vi inputform(const Graph& g, int r) {
	int n = sz(g);

	vi par(n);
	function<void(int, int)> dfs = [&](int s, int p) {
		par[s] = { p + 1 };

		repe(t, g[s]) {
			if (t == p) continue;
			dfs(t, s);
		}
	};
	dfs(r, -1);

	return par;
}


//【行列】
template <class T>
struct Matrix {
	int n, m; // 行列のサイズ(n 行 m 列)
	vector<vector<T>> v; // 行列の成分

	// n×m 零行列で初期化する.
	Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}

	// n×n 単位行列で初期化する.
	Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }

	// 二次元配列 a[0..n)[0..m) の要素で初期化する.
	Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
	Matrix() : n(0), m(0) {}

	// 代入
	Matrix(const Matrix&) = default;
	Matrix& operator=(const Matrix&) = default;

	// アクセス
	inline vector<T> const& operator[](int i) const { return v[i]; }
	inline vector<T>& operator[](int i) {return v[i];}

	// 入力
	friend istream& operator>>(istream& is, Matrix& a) {
		rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
		return is;
	}

	// 行の追加
	void push_back(const vector<T>& a) {
		Assert(sz(a) == m);
		v.push_back(a);
		n++;
	}

	// 行の削除
	void pop_back() {
		Assert(n > 0);
		v.pop_back();
		n--;
	}

	// サイズ変更
	void resize(int n_) {
		v.resize(n_);
		n = n_;
	}

	void resize(int n_, int m_) {
		n = n_;
		m = m_;

		v.resize(n);
		rep(i, n) v[i].resize(m);
	}

	// 空か
	bool empty() const { return min(n, m) == 0; }

	// 比較
	bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
	bool operator!=(const Matrix& b) const { return !(*this == b); }

	// 加算,減算,スカラー倍
	Matrix& operator+=(const Matrix& b) {
		rep(i, n) rep(j, m) v[i][j] += b[i][j];
		return *this;
	}
	Matrix& operator-=(const Matrix& b) {
		rep(i, n) rep(j, m) v[i][j] -= b[i][j];
		return *this;
	}
	Matrix& operator*=(const T& c) {
		rep(i, n) rep(j, m) v[i][j] *= c;
		return *this;
	}
	Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
	Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
	Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
	friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
	Matrix operator-() const { return Matrix(*this) *= T(-1); }

	// 行列ベクトル積 : O(m n)
	vector<T> operator*(const vector<T>& x) const {
		vector<T> y(n);
		rep(i, n) rep(j, m)	y[i] += v[i][j] * x[j];
		return y;
	}

	// ベクトル行列積 : O(m n)
	friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
		vector<T> y(a.m);
		rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
		return y;
	}

	// 積:O(n^3)
	Matrix operator*(const Matrix& b) const {
		Matrix res(n, b.m);
		rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j];
		return res;
	}
	Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }

	// 累乗:O(n^3 log d)
	Matrix pow(ll d) const {
		Matrix res(n), pow2 = *this;
		while (d > 0) {
			if (d & 1) res *= pow2;
			pow2 *= pow2;
			d >>= 1;
		}
		return res;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Matrix& a) {
		rep(i, a.n) {
			os << "[";
			rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
			if (i < a.n - 1) os << "\n";
		}
		return os;
	}
#endif
};


//【行簡約形(行交換なし)】O(n m min(n, m))
template <class T>
vector<pii> row_reduced_form(Matrix<T>& A) {
	int n = A.n, m = A.m;
	
	vector<pii> piv;
	piv.reserve(min(n, m));

	// 未確定の列を記録しておくリスト
	list<int> rjs;
	rep(j, m) rjs.push_back(j);

	rep(i, n) {
		// 第 i 行の係数を左から走査し非 0 を見つける.
		auto it = rjs.begin();
		for (; it != rjs.end(); it++) if (A[i][*it] != 0) break;

		// 第 i 行の全てが 0 なら無視する.
		if (it == rjs.end()) continue;

		// A[i][j] をピボットに選択する.
		int j = *it;
		rjs.erase(it);
		piv.emplace_back(i, j);

		// A[i][j] が 1 になるよう行全体を A[i][j] で割る.
		T Aij_inv = T(1) / A[i][j];
		repi(j2, j, m - 1) A[i][j2] *= Aij_inv;

		// 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる.
		rep(i2, n) if (A[i2][j] != 0 && i2 != i) {
			T mul = A[i2][j];
			repi(j2, j, m - 1) A[i2][j2] -= A[i][j2] * mul;
		}
	}

	return piv;
}


//【逆行列】O(n^3)
template <class T>
Matrix<T> inverse_matrix(const Matrix<T>& mat) {
	int n = mat.n;

	// 元の行列 mat と単位行列を繋げた拡大行列 v を作る.
	vector<vector<T>> v(n, vector<T>(2 * n));
	rep(i, n) rep(j, n) {
		v[i][j] = mat[i][j];
		if (i == j) v[i][n + j] = 1;
	}
	int m = 2 * n;

	// 注目位置を (i, j)(i 行目かつ j 列目)とする.
	int i = 0, j = 0;

	// 拡大行列に対して行基本変形を行い,左側を単位行列にすることを目指す.
	while (i < n && j < m) {
		// 同じ列の下方の行から非 0 成分を見つける.
		int i2 = i;
		while (i2 < n && v[i2][j] == T(0)) i2++;

		// 見つからなかったら全て 0 の列があったので mat は非正則
		if (i2 == n) return Matrix<T>();

		// 見つかったら i 行目とその行を入れ替える.
		if (i != i2) swap(v[i], v[i2]);

		// v[i][j] が 1 になるよう行全体を v[i][j] で割る.
		T vij_inv = T(1) / v[i][j];
		repi(j2, j, m - 1) v[i][j2] *= vij_inv;

		// v[i][j] と同じ列の成分が全て 0 になるよう i 行目を定数倍して減じる.
		rep(i2, n) {
			// i 行目だけは引かない.
			if (i2 == i) continue;

			T mul = v[i2][j];
			repi(j2, j, m - 1) v[i2][j2] -= v[i][j2] * mul;
		}

		// 注目位置を右下に移す.
		i++; j++;
	}

	// 拡大行列の右半分が mat の逆行列なのでコピーする.
	Matrix<T> mat_inv(n, n);
	rep(i, n) rep(j, n) mat_inv[i][j] = v[i][n + j];

	return mat_inv;
}


//【根付き木の同型類】O(n log n)
vi rooted_tree_classification(const Graph& g, int r) {
	int n = sz(g);

	static map<vi, int> to_id;
	vi id(n);

	function<int(int s, int p)> dfs = [&](int s, int p) {
		vi ch;
		repe(t, g[s]) {
			if (t == p) continue;
			ch.push_back(dfs(t, s));
		}
		sort(all(ch));

		if (to_id.count(ch)) id[s] = to_id[ch];
		else id[s] = to_id[ch] = sz(to_id);

		return id[s];
	};
	dfs(r, -1);

	return id;
}


// 遷移行列の係数を計算し,埋め込み用のコードを出力する.
// 待てない場合は lv_max や LB_max を指定する.
void embed_coefs(int lv_max = INF, int LB_max = INF) {
	using TREE = vi; // 木は親の列 p[1..n) で表す.

	vector<TREE> trees{ {} };
	int idx = 0;
	int ID = -1;
	int PDIM = -1;

	repi(lv, 1, INF) {
		dump("----------- lv:", lv, "--------------");
		
		// 上用の木(位置指定子追加)と下用の木(そのまま)に整形する.
		vector<TREE> treesT, treesB(trees);
		rep(i, idx) repi(p, 0, sz(trees[i])) {
			treesT.push_back(trees[i]);
			treesT.back().push_back(p);
		}
		
		int LT = sz(treesT); int LB = min(sz(treesB), LB_max);
		dump("LT:", LT, "LB:", LB);

		// (i,j) 成分が naive(treesT[i] join treesB[j]) であるような行列 mat を得る.
		Matrix<mint> mat(LT, LB);
		rep(i, LT) rep(j, LB) {
			TREE tree(treesT[i]);
			int p0 = tree.back();
			tree.pop_back();

			int offset = sz(tree);
			repe(p, treesB[j]) {
				int np = (p == 0 ? p0 : p + offset);
				tree.push_back(np);
			}

			mat[i][j] = naive(tree);
		}
		//dump("mat:"); dump(mat);

		// mat に対して行基本変形を行いピボット位置のリスト piv を得る.
		auto piv = row_reduced_form(mat);
		int DIM = sz(piv);
		dump("piv(", DIM, "):"); dump(piv);

		// rank の更新がなかったら必要な情報は揃ったとみなして打ち切る(たまにミスる)
		if (lv == lv_max || (DIM > 0 && DIM == PDIM)) {
			// 選択した行と列をそれぞれ昇順に並べて is, js とする(0 始まりのはず)
			vi is(DIM), js(DIM);
			rep(r, DIM) tie(is[r], js[r]) = piv[r];
			sort(all(js));

			// js : 本質的に区別しなければならない木のリスト
			// is : js を区別するのに必要最低限の接ぎ木のリスト
			
			// 基底の変換行列 P を得る.
			Matrix<mint> P(DIM, DIM);
			rep(i_, DIM) rep(j_, DIM) {
				int i = is[i_];
				int j = js[j_];

				TREE tree(treesT[i]);
				int p0 = tree.back();
				tree.pop_back();

				int offset = sz(tree);
				repe(p, treesB[j]) {
					int np = (p == 0 ? p0 : p + offset);
					tree.push_back(np);
				}

				P[i_][j_] = naive(tree);
			}
			
			// P の逆行列 P_inv を得る.
			auto P_inv = inverse_matrix(P);

			// apply の表現行列を得る.
			Matrix<mint> matA(DIM, DIM);
			rep(i_, DIM) rep(j_, DIM) {
				int i = is[i_];
				int j = js[j_];

				TREE tree(treesT[i]);
				
				int offset = sz(tree);
				repe(p, treesB[j]) {
					int np = p + offset;
					tree.push_back(np);
				}

				matA[i_][j_] = naive(tree);
			}
			matA = P_inv * matA;

			// merge の表現テンソルを得る.
			vvvm tsrM(DIM, vvm(DIM, vm(DIM)));
			rep(j1_, DIM) rep(j2_, DIM) {
				if (j1_ > j2_) {
					// 子の順序は無視する.
					rep(i_, DIM) {
						tsrM[j1_][j2_][i_] = tsrM[j2_][j1_][i_];
					}
				}
				else {
					rep(i_, DIM) {
						int i = is[i_];
						int j1 = js[j1_];
						int j2 = js[j2_];

						TREE tree(treesT[i]);
						int p0 = tree.back();
						tree.pop_back();

						int offset = sz(tree);
						repe(p, treesB[j1]) {
							int np = (p == 0 ? p0 : p + offset);
							tree.push_back(np);
						}

						offset = sz(tree);
						repe(p, treesB[j2]) {
							int np = (p == 0 ? p0 : p + offset);
							tree.push_back(np);
						}

						tsrM[j1_][j2_][i_] = naive(tree);
					}
					tsrM[j1_][j2_] = P_inv * tsrM[j1_][j2_];
				}
			}
			
			// 根を閉じるためのベクトルを得る.
			vm vecP(DIM);
			rep(i, DIM) vecP[i] = P[0][i];

			// スパース埋め込み用の文字列を出力する.
			auto to_signed_string = [](mint x) {
				int v = x.val();
				int mod = mint::mod();
				if (v > mod / 2) v -= mod;
				return to_string(v);
			};
			string eb;
			eb += "constexpr int DIM = ";
			eb += to_string(DIM);
			eb += ";\n";
			eb += "tuple<int, int, VTYPE> matA[] = {";
			rep(i, DIM) rep(j, DIM) {
				if (matA[i][j] == 0) continue;
				eb += "{";
				eb += to_string(i);
				eb += ",";
				eb += to_string(j);
				eb += ",";
				eb += to_signed_string(matA[i][j]);
				eb += "},";
			}
			eb.pop_back();
			eb += "};\n";
			eb += "tuple<int, int, int, VTYPE> tsrM[] = {";
			rep(i, DIM) rep(j1, DIM) rep(j2, DIM) {
				if (tsrM[j1][j2][i] == 0) continue;
				eb += "{";
				eb += to_string(i);
				eb += ",";
				eb += to_string(j1);
				eb += ",";
				eb += to_string(j2);
				eb += ",";
				eb += to_signed_string(tsrM[j1][j2][i]);
				eb += "},";
			}
			eb.pop_back();
			eb += "};\n";			
			eb += "VTYPE vecP[DIM] = {";
			rep(j, DIM) eb += to_signed_string(vecP[j]) + ",";
			eb.pop_back();
			eb += "};\n";
			cout << eb;
			exit(0);
		}

		// 基底ガチャ
		//mt19937_64 mt((int)time(NULL)); shuffle(trees.begin() + idx, trees.end(), mt);
		
		// 次に大きい木たちを trees に追加する.
		int nidx = sz(trees);
		repi(i, idx, nidx - 1) rep(p, lv) {
			trees.push_back(trees[i]);
			trees.back().push_back(p);

			Graph g(lv + 1);
			rep(j, lv) {
				g[j + 1].push_back(trees.back()[j]);
				g[trees.back()[j]].push_back(j + 1);
			}

			auto hash = rooted_tree_classification(g, 0);
			if (hash[0] <= ID) {
				trees.pop_back();
				continue;
			}
			ID = hash[0];
		}
		idx = nidx;
		PDIM = DIM;
	}
}


template <class VTYPE>
vector<VTYPE> solve(const Graph& g, int r) {
	// --------------- embed_coefs() からの出力を貼る ----------------
	constexpr int DIM = 9;
	vector<tuple<int, int, VTYPE>> matA = { {1,0,1},{2,3,-499122176},{2,4,-4},{2,5,-499122176},{2,6,499122174},{2,7,-11},{2,8,499122173},{3,1,1},{3,3,499122176},{3,4,499122176},{3,5,499122175},{3,6,499122176},{3,7,499122175},{3,8,-2},{4,3,499122176},{4,4,-499122169},{4,5,499122176},{4,6,-499122171},{4,7,-499122156},{4,8,7},{5,3,1},{5,4,-3},{5,5,1},{5,6,-2},{5,7,-8},{5,8,-2},{6,2,1},{6,3,-499122176},{6,4,-499122175},{6,5,-499122175},{6,6,-499122176},{6,7,-499122174},{6,8,2},{7,4,499122173},{7,6,-3},{7,7,499122167},{7,8,499122173},{8,4,3},{8,6,3},{8,7,8},{8,8,3} };
	vector<tuple<int, int, int, VTYPE>> tsrM = { {0,0,0,1},{1,0,1,1},{1,1,0,1},{2,0,2,1},{2,1,1,1},{2,1,6,-1},{2,1,7,1},{2,1,8,499122176},{2,2,0,1},{2,2,4,1},{2,2,5,499122176},{2,2,6,-3},{2,2,7,2},{2,2,8,-3},{2,3,3,-499122174},{2,3,4,499122176},{2,3,5,1},{2,3,6,-1},{2,3,7,-3},{2,3,8,499122174},{2,4,2,1},{2,4,3,499122176},{2,4,4,2},{2,4,5,-3},{2,4,6,499122169},{2,4,7,-1},{2,4,8,499122165},{2,5,2,499122176},{2,5,3,1},{2,5,4,-3},{2,5,5,499122174},{2,5,6,499122172},{2,5,7,499122165},{2,5,8,-11},{2,6,1,-1},{2,6,2,-3},{2,6,3,-1},{2,6,4,499122169},{2,6,5,499122172},{2,6,6,499122172},{2,6,7,-18},{2,6,8,-12},{2,7,1,1},{2,7,2,2},{2,7,3,-3},{2,7,4,-1},{2,7,5,499122165},{2,7,6,-18},{2,7,7,-20},{2,7,8,-36},{2,8,1,499122176},{2,8,2,-3},{2,8,3,499122174},{2,8,4,499122165},{2,8,5,-11},{2,8,6,-12},{2,8,7,-36},{2,8,8,499122145},{3,0,3,1},{3,1,6,499122176},{3,1,7,-499122176},{3,1,8,249561089},{3,2,4,-499122176},{3,2,5,249561089},{3,2,6,-499122176},{3,2,7,3},{3,2,8,-499122173},{3,3,0,1},{3,3,3,249561087},{3,3,4,249561089},{3,3,5,499122176},{3,3,6,-1},{3,3,7,-499122173},{3,3,8,249561090},{3,4,2,-499122176},{3,4,3,249561089},{3,4,4,3},{3,4,5,-499122173},{3,4,6,-249561085},{3,4,7,-499122165},{3,4,8,-249561077},{3,5,2,249561089},{3,5,3,499122176},{3,5,4,-499122173},{3,5,5,249561090},{3,5,6,249561089},{3,5,7,-249561077},{3,5,8,-499122169},{3,6,1,499122176},{3,6,2,-499122176},{3,6,3,-1},{3,6,4,-249561085},{3,6,5,249561089},{3,6,6,-249561089},{3,6,7,10},{3,6,8,5},{3,7,1,-499122176},{3,7,2,3},{3,7,3,-499122173},{3,7,4,-499122165},{3,7,5,-249561077},{3,7,6,10},{3,7,7,36},{3,7,8,31},{3,8,1,249561089},{3,8,2,-499122173},{3,8,3,249561090},{3,8,4,-249561077},{3,8,5,-499122169},{3,8,6,5},{3,8,7,31},{3,8,8,-249561067},{4,0,4,1},{4,1,2,1},{4,1,6,-499122174},{4,1,7,499122174},{4,1,8,249561090},{4,2,1,1},{4,2,4,499122174},{4,2,5,249561090},{4,2,6,-499122169},{4,2,7,-3},{4,2,8,-499122167},{4,3,3,249561084},{4,3,4,249561090},{4,3,5,499122176},{4,3,6,3},{4,3,7,-499122167},{4,3,8,249561097},{4,4,0,1},{4,4,2,499122174},{4,4,3,249561090},{4,4,4,-3},{4,4,5,-499122167},{4,4,6,-249561069},{4,4,7,-499122166},{4,4,8,-249561054},{4,5,2,249561090},{4,5,3,499122176},{4,5,4,-499122167},{4,5,5,249561097},{4,5,6,249561100},{4,5,7,-249561054},{4,5,8,-499122145},{4,6,1,-499122174},{4,6,2,-499122169},{4,6,3,3},{4,6,4,-249561069},{4,6,5,249561100},{4,6,6,-249561078},{4,6,7,47},{4,6,8,31},{4,7,1,499122174},{4,7,2,-3},{4,7,3,-499122167},{4,7,4,-499122166},{4,7,5,-249561054},{4,7,6,47},{4,7,7,72},{4,7,8,103},{4,8,1,249561090},{4,8,2,-499122167},{4,8,3,249561097},{4,8,4,-249561054},{4,8,5,-499122145},{4,8,6,31},{4,8,7,103},{4,8,8,-249561002},{5,0,5,1},{5,1,3,1},{5,1,6,-1},{5,1,7,-2},{5,1,8,-4},{5,2,4,-2},{5,2,5,-4},{5,2,6,-6},{5,2,7,-12},{5,2,8,-16},{5,3,1,1},{5,3,3,2},{5,3,4,-4},{5,3,5,-2},{5,3,6,-2},{5,3,7,-16},{5,3,8,-12},{5,4,2,-2},{5,4,3,-4},{5,4,4,-12},{5,4,5,-16},{5,4,6,-18},{5,4,7,-46},{5,4,8,-48},{5,5,0,1},{5,5,2,-4},{5,5,3,-2},{5,5,4,-16},{5,5,5,-12},{5,5,6,-10},{5,5,7,-48},{5,5,8,-36},{5,6,1,-1},{5,6,2,-6},{5,6,3,-2},{5,6,4,-18},{5,6,5,-10},{5,6,6,-6},{5,6,7,-46},{5,6,8,-28},{5,7,1,-2},{5,7,2,-12},{5,7,3,-16},{5,7,4,-46},{5,7,5,-48},{5,7,6,-46},{5,7,7,-144},{5,7,8,-128},{5,8,1,-4},{5,8,2,-16},{5,8,3,-12},{5,8,4,-48},{5,8,5,-36},{5,8,6,-28},{5,8,7,-128},{5,8,8,-92},{6,0,6,1},{6,1,6,-499122176},{6,1,7,499122176},{6,1,8,-249561089},{6,2,4,499122176},{6,2,5,-249561089},{6,2,6,499122176},{6,2,7,-3},{6,2,8,499122173},{6,3,3,-249561087},{6,3,4,-249561089},{6,3,5,-499122176},{6,3,6,1},{6,3,7,499122173},{6,3,8,-249561090},{6,4,2,499122176},{6,4,3,-249561089},{6,4,4,-3},{6,4,5,499122173},{6,4,6,249561085},{6,4,7,499122165},{6,4,8,249561077},{6,5,2,-249561089},{6,5,3,-499122176},{6,5,4,499122173},{6,5,5,-249561090},{6,5,6,-249561089},{6,5,7,249561077},{6,5,8,499122169},{6,6,0,1},{6,6,1,-499122176},{6,6,2,499122176},{6,6,3,1},{6,6,4,249561085},{6,6,5,-249561089},{6,6,6,249561089},{6,6,7,-10},{6,6,8,-5},{6,7,1,499122176},{6,7,2,-3},{6,7,3,499122173},{6,7,4,499122165},{6,7,5,249561077},{6,7,6,-10},{6,7,7,-36},{6,7,8,-31},{6,8,1,-249561089},{6,8,2,499122173},{6,8,3,-249561090},{6,8,4,249561077},{6,8,5,499122169},{6,8,6,-5},{6,8,7,-31},{6,8,8,249561067},{7,0,7,1},{7,1,4,1},{7,1,6,499122175},{7,1,7,-499122174},{7,1,8,249561087},{7,2,2,1},{7,2,4,-499122174},{7,2,5,249561087},{7,2,6,499122172},{7,2,7,2},{7,2,8,499122170},{7,3,3,249561090},{7,3,4,249561087},{7,3,5,499122176},{7,3,6,-2},{7,3,7,499122170},{7,3,8,249561082},{7,4,1,1},{7,4,2,-499122174},{7,4,3,249561087},{7,4,4,2},{7,4,5,499122170},{7,4,6,-249561100},{7,4,7,499122168},{7,4,8,-249561111},{7,5,2,249561087},{7,5,3,499122176},{7,5,4,499122170},{7,5,5,249561082},{7,5,6,249561081},{7,5,7,-249561111},{7,5,8,499122156},{7,6,1,499122175},{7,6,2,499122172},{7,6,3,-2},{7,6,4,-249561100},{7,6,5,249561081},{7,6,6,-249561094},{7,6,7,-29},{7,6,8,-19},{7,7,0,1},{7,7,1,-499122174},{7,7,2,2},{7,7,3,499122170},{7,7,4,499122168},{7,7,5,-249561111},{7,7,6,-29},{7,7,7,-51},{7,7,8,-67},{7,8,1,249561087},{7,8,2,499122170},{7,8,3,249561082},{7,8,4,-249561111},{7,8,5,499122156},{7,8,6,-19},{7,8,7,-67},{7,8,8,-249561143},{8,0,8,1},{8,1,5,1},{8,1,6,2},{8,1,7,2},{8,1,8,5},{8,2,3,1},{8,2,4,2},{8,2,5,5},{8,2,6,7},{8,2,7,12},{8,2,8,17},{8,3,2,1},{8,3,3,-1},{8,3,4,5},{8,3,5,3},{8,3,6,3},{8,3,7,17},{8,3,8,13},{8,4,2,2},{8,4,3,5},{8,4,4,12},{8,4,5,17},{8,4,6,19},{8,4,7,46},{8,4,8,49},{8,5,1,1},{8,5,2,5},{8,5,3,3},{8,5,4,17},{8,5,5,13},{8,5,6,11},{8,5,7,49},{8,5,8,37},{8,6,1,2},{8,6,2,7},{8,6,3,3},{8,6,4,19},{8,6,5,11},{8,6,6,7},{8,6,7,47},{8,6,8,29},{8,7,1,2},{8,7,2,12},{8,7,3,17},{8,7,4,46},{8,7,5,49},{8,7,6,47},{8,7,7,144},{8,7,8,129},{8,8,0,1},{8,8,1,5},{8,8,2,17},{8,8,3,13},{8,8,4,49},{8,8,5,37},{8,8,6,29},{8,8,7,129},{8,8,8,93} };
	vector<VTYPE> vecP = { 0,0,0,0,6,6,6,24,20 };
	// --------------------------------------------------------------


	// 木 DP
	int n = sz(g);
	vector<array<VTYPE, DIM>> dp(n);
	rep(s, n) {
		dp[s].fill(0);
		dp[s][0] = 1;
	}

	auto apply = [&](const array<VTYPE, DIM>& x) {
		array<VTYPE, DIM> z; z.fill(0);
		for (auto [i, j, v] : matA) z[i] += v * x[j];
		return z;
	};

	auto merge = [&](const array<VTYPE, DIM>& x, const array<VTYPE, DIM>& y) {
		array<VTYPE, DIM> z; z.fill(0);
		for (auto [i, j1, j2, v] : tsrM) z[i] += v * x[j1] * y[j2];
		return z;
	};

	function<void(int, int)> dfs = [&](int s, int p) {
		bool first_call = true;

		repe(t, g[s]) {
			if (t == p) continue;

			dfs(t, s);

			if (first_call) {
				dp[s] = dp[t];
				first_call = false;
			}
			else {
				dp[s] = merge(dp[s], dp[t]);
			}
		}

		dp[s] = apply(dp[s]);
	};
	dfs(r, -1);
	
	vector<VTYPE> res(n, 0);
	rep(s, n) rep(j, DIM) res[s] += vecP[j] * dp[s][j];
	
	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	//【方法】
	// 愚直を書いて集めたデータをもとに遷移テンソルを復元する.

	//【使い方】
	// 1. mint naive(親の列) を実装する.
	// 2. embed_coefs(); を実行する.
	// 3. 出力を solve() 内に貼る.
	// 4. auto dp = solve<答えの型>(グラフ, 根) で勝手に DP してくれる.


//	embed_coefs(INF, INF); 

	int n;
	cin >> n;

	auto g = read_Graph(n);

	dump("naive:", naive(inputform(g, 0))); dump("======");

	auto dp = solve<mint>(g, 0);

	cout << dp[0].val() << "\n"; // スパースにして 624 ms → 463 ms
}
/*
----------- lv: 1 --------------
LT: 0 LB: 1
piv( 0 ):

----------- lv: 2 --------------
LT: 1 LB: 2
piv( 0 ):

----------- lv: 3 --------------
LT: 3 LB: 4
piv( 1 ):
(1,2)
----------- lv: 4 --------------
LT: 9 LB: 8
piv( 5 ):
(0,4) (1,2) (2,5) (3,1) (4,3)
----------- lv: 5 --------------
LT: 25 LB: 17
piv( 9 ):
(0,4) (1,2) (2,5) (3,1) (4,3) (6,8) (9,0) (10,6) (13,9)
----------- lv: 6 --------------
LT: 70 LB: 37
piv( 9 ):
(0,4) (1,2) (2,5) (3,1) (4,3) (6,8) (9,0) (10,6) (13,9)
constexpr int DIM = 9;
tuple<int, int, VTYPE> matA[] = {{1,0,1},{2,3,-499122176},{2,4,-4},{2,5,-499122176},{2,6,499122174},{2,7,-11},{2,8,499122173},{3,1,1},{3,3,499122176},{3,4,499122176},{3,5,499122175},{3,6,499122176},{3,7,499122175},{3,8,-2},{4,3,499122176},{4,4,-499122169},{4,5,499122176},{4,6,-499122171},{4,7,-499122156},{4,8,7},{5,3,1},{5,4,-3},{5,5,1},{5,6,-2},{5,7,-8},{5,8,-2},{6,2,1},{6,3,-499122176},{6,4,-499122175},{6,5,-499122175},{6,6,-499122176},{6,7,-499122174},{6,8,2},{7,4,499122173},{7,6,-3},{7,7,499122167},{7,8,499122173},{8,4,3},{8,6,3},{8,7,8},{8,8,3}};
tuple<int, int, int, VTYPE> tsrM[] = {{0,0,0,1},{1,0,1,1},{1,1,0,1},{2,0,2,1},{2,1,1,1},{2,1,6,-1},{2,1,7,1},{2,1,8,499122176},{2,2,0,1},{2,2,4,1},{2,2,5,499122176},{2,2,6,-3},{2,2,7,2},{2,2,8,-3},{2,3,3,-499122174},{2,3,4,499122176},{2,3,5,1},{2,3,6,-1},{2,3,7,-3},{2,3,8,499122174},{2,4,2,1},{2,4,3,499122176},{2,4,4,2},{2,4,5,-3},{2,4,6,499122169},{2,4,7,-1},{2,4,8,499122165},{2,5,2,499122176},{2,5,3,1},{2,5,4,-3},{2,5,5,499122174},{2,5,6,499122172},{2,5,7,499122165},{2,5,8,-11},{2,6,1,-1},{2,6,2,-3},{2,6,3,-1},{2,6,4,499122169},{2,6,5,499122172},{2,6,6,499122172},{2,6,7,-18},{2,6,8,-12},{2,7,1,1},{2,7,2,2},{2,7,3,-3},{2,7,4,-1},{2,7,5,499122165},{2,7,6,-18},{2,7,7,-20},{2,7,8,-36},{2,8,1,499122176},{2,8,2,-3},{2,8,3,499122174},{2,8,4,499122165},{2,8,5,-11},{2,8,6,-12},{2,8,7,-36},{2,8,8,499122145},{3,0,3,1},{3,1,6,499122176},{3,1,7,-499122176},{3,1,8,249561089},{3,2,4,-499122176},{3,2,5,249561089},{3,2,6,-499122176},{3,2,7,3},{3,2,8,-499122173},{3,3,0,1},{3,3,3,249561087},{3,3,4,249561089},{3,3,5,499122176},{3,3,6,-1},{3,3,7,-499122173},{3,3,8,249561090},{3,4,2,-499122176},{3,4,3,249561089},{3,4,4,3},{3,4,5,-499122173},{3,4,6,-249561085},{3,4,7,-499122165},{3,4,8,-249561077},{3,5,2,249561089},{3,5,3,499122176},{3,5,4,-499122173},{3,5,5,249561090},{3,5,6,249561089},{3,5,7,-249561077},{3,5,8,-499122169},{3,6,1,499122176},{3,6,2,-499122176},{3,6,3,-1},{3,6,4,-249561085},{3,6,5,249561089},{3,6,6,-249561089},{3,6,7,10},{3,6,8,5},{3,7,1,-499122176},{3,7,2,3},{3,7,3,-499122173},{3,7,4,-499122165},{3,7,5,-249561077},{3,7,6,10},{3,7,7,36},{3,7,8,31},{3,8,1,249561089},{3,8,2,-499122173},{3,8,3,249561090},{3,8,4,-249561077},{3,8,5,-499122169},{3,8,6,5},{3,8,7,31},{3,8,8,-249561067},{4,0,4,1},{4,1,2,1},{4,1,6,-499122174},{4,1,7,499122174},{4,1,8,249561090},{4,2,1,1},{4,2,4,499122174},{4,2,5,249561090},{4,2,6,-499122169},{4,2,7,-3},{4,2,8,-499122167},{4,3,3,249561084},{4,3,4,249561090},{4,3,5,499122176},{4,3,6,3},{4,3,7,-499122167},{4,3,8,249561097},{4,4,0,1},{4,4,2,499122174},{4,4,3,249561090},{4,4,4,-3},{4,4,5,-499122167},{4,4,6,-249561069},{4,4,7,-499122166},{4,4,8,-249561054},{4,5,2,249561090},{4,5,3,499122176},{4,5,4,-499122167},{4,5,5,249561097},{4,5,6,249561100},{4,5,7,-249561054},{4,5,8,-499122145},{4,6,1,-499122174},{4,6,2,-499122169},{4,6,3,3},{4,6,4,-249561069},{4,6,5,249561100},{4,6,6,-249561078},{4,6,7,47},{4,6,8,31},{4,7,1,499122174},{4,7,2,-3},{4,7,3,-499122167},{4,7,4,-499122166},{4,7,5,-249561054},{4,7,6,47},{4,7,7,72},{4,7,8,103},{4,8,1,249561090},{4,8,2,-499122167},{4,8,3,249561097},{4,8,4,-249561054},{4,8,5,-499122145},{4,8,6,31},{4,8,7,103},{4,8,8,-249561002},{5,0,5,1},{5,1,3,1},{5,1,6,-1},{5,1,7,-2},{5,1,8,-4},{5,2,4,-2},{5,2,5,-4},{5,2,6,-6},{5,2,7,-12},{5,2,8,-16},{5,3,1,1},{5,3,3,2},{5,3,4,-4},{5,3,5,-2},{5,3,6,-2},{5,3,7,-16},{5,3,8,-12},{5,4,2,-2},{5,4,3,-4},{5,4,4,-12},{5,4,5,-16},{5,4,6,-18},{5,4,7,-46},{5,4,8,-48},{5,5,0,1},{5,5,2,-4},{5,5,3,-2},{5,5,4,-16},{5,5,5,-12},{5,5,6,-10},{5,5,7,-48},{5,5,8,-36},{5,6,1,-1},{5,6,2,-6},{5,6,3,-2},{5,6,4,-18},{5,6,5,-10},{5,6,6,-6},{5,6,7,-46},{5,6,8,-28},{5,7,1,-2},{5,7,2,-12},{5,7,3,-16},{5,7,4,-46},{5,7,5,-48},{5,7,6,-46},{5,7,7,-144},{5,7,8,-128},{5,8,1,-4},{5,8,2,-16},{5,8,3,-12},{5,8,4,-48},{5,8,5,-36},{5,8,6,-28},{5,8,7,-128},{5,8,8,-92},{6,0,6,1},{6,1,6,-499122176},{6,1,7,499122176},{6,1,8,-249561089},{6,2,4,499122176},{6,2,5,-249561089},{6,2,6,499122176},{6,2,7,-3},{6,2,8,499122173},{6,3,3,-249561087},{6,3,4,-249561089},{6,3,5,-499122176},{6,3,6,1},{6,3,7,499122173},{6,3,8,-249561090},{6,4,2,499122176},{6,4,3,-249561089},{6,4,4,-3},{6,4,5,499122173},{6,4,6,249561085},{6,4,7,499122165},{6,4,8,249561077},{6,5,2,-249561089},{6,5,3,-499122176},{6,5,4,499122173},{6,5,5,-249561090},{6,5,6,-249561089},{6,5,7,249561077},{6,5,8,499122169},{6,6,0,1},{6,6,1,-499122176},{6,6,2,499122176},{6,6,3,1},{6,6,4,249561085},{6,6,5,-249561089},{6,6,6,249561089},{6,6,7,-10},{6,6,8,-5},{6,7,1,499122176},{6,7,2,-3},{6,7,3,499122173},{6,7,4,499122165},{6,7,5,249561077},{6,7,6,-10},{6,7,7,-36},{6,7,8,-31},{6,8,1,-249561089},{6,8,2,499122173},{6,8,3,-249561090},{6,8,4,249561077},{6,8,5,499122169},{6,8,6,-5},{6,8,7,-31},{6,8,8,249561067},{7,0,7,1},{7,1,4,1},{7,1,6,499122175},{7,1,7,-499122174},{7,1,8,249561087},{7,2,2,1},{7,2,4,-499122174},{7,2,5,249561087},{7,2,6,499122172},{7,2,7,2},{7,2,8,499122170},{7,3,3,249561090},{7,3,4,249561087},{7,3,5,499122176},{7,3,6,-2},{7,3,7,499122170},{7,3,8,249561082},{7,4,1,1},{7,4,2,-499122174},{7,4,3,249561087},{7,4,4,2},{7,4,5,499122170},{7,4,6,-249561100},{7,4,7,499122168},{7,4,8,-249561111},{7,5,2,249561087},{7,5,3,499122176},{7,5,4,499122170},{7,5,5,249561082},{7,5,6,249561081},{7,5,7,-249561111},{7,5,8,499122156},{7,6,1,499122175},{7,6,2,499122172},{7,6,3,-2},{7,6,4,-249561100},{7,6,5,249561081},{7,6,6,-249561094},{7,6,7,-29},{7,6,8,-19},{7,7,0,1},{7,7,1,-499122174},{7,7,2,2},{7,7,3,499122170},{7,7,4,499122168},{7,7,5,-249561111},{7,7,6,-29},{7,7,7,-51},{7,7,8,-67},{7,8,1,249561087},{7,8,2,499122170},{7,8,3,249561082},{7,8,4,-249561111},{7,8,5,499122156},{7,8,6,-19},{7,8,7,-67},{7,8,8,-249561143},{8,0,8,1},{8,1,5,1},{8,1,6,2},{8,1,7,2},{8,1,8,5},{8,2,3,1},{8,2,4,2},{8,2,5,5},{8,2,6,7},{8,2,7,12},{8,2,8,17},{8,3,2,1},{8,3,3,-1},{8,3,4,5},{8,3,5,3},{8,3,6,3},{8,3,7,17},{8,3,8,13},{8,4,2,2},{8,4,3,5},{8,4,4,12},{8,4,5,17},{8,4,6,19},{8,4,7,46},{8,4,8,49},{8,5,1,1},{8,5,2,5},{8,5,3,3},{8,5,4,17},{8,5,5,13},{8,5,6,11},{8,5,7,49},{8,5,8,37},{8,6,1,2},{8,6,2,7},{8,6,3,3},{8,6,4,19},{8,6,5,11},{8,6,6,7},{8,6,7,47},{8,6,8,29},{8,7,1,2},{8,7,2,12},{8,7,3,17},{8,7,4,46},{8,7,5,49},{8,7,6,47},{8,7,7,144},{8,7,8,129},{8,8,0,1},{8,8,1,5},{8,8,2,17},{8,8,3,13},{8,8,4,49},{8,8,5,37},{8,8,6,29},{8,8,7,129},{8,8,8,93}};
VTYPE vecP[DIM] = {0,0,0,0,6,6,6,24,20};
*/
0