結果

問題 No.673 カブトムシ
ユーザー IL_mstaIL_msta
提出日時 2018-04-13 23:30:12
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 15,657 bytes
コンパイル時間 1,404 ms
コンパイル使用メモリ 126,820 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-30 05:54:27
合計ジャッジ時間 1,995 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define _USE_MATH_DEFINES
#pragma region include
#include <iostream>
#include <iomanip>
#include <stdio.h>
#include <sstream>
#include <algorithm>
#include <iterator>
#include <cmath>
#include <complex>
#include <string>
#include <cstring>
#include <vector>
#include <bitset>
#include <queue>
#include <set>
#include <map>
#include <stack>
#include <list>
#include <ctime>
////
//#include <random>//
#pragma endregion //#include
/////////
#pragma region typedef
typedef long long LL;
typedef long double LD;
typedef unsigned long long ULL;
#pragma endregion //typedef
////
const int INF = (int)1e9;
const LL MOD = (LL)1e9+7;
const LL LINF = (LL)4e18+20;
const LD PI = acos(-1.0);
const double EPS = 1e-9;
/////////
using namespace::std;
/////////
#pragma region Math
#pragma region
long long ext_gcd(long long a,long long b,long long& x,long long& y){
if(b==0){
x=1;y=0;return a;
}
long long q = a/b;
long long g = ext_gcd(b,a-q*b,x,y);
x = x - q*y;
swap(x,y);
return g;
}
template<class T>
inline T gcd(T a, T b){return b ? gcd(b, a % b) : a;}
#pragma endregion // gcd
#pragma region
template<class T>
inline T lcm(T a, T b){return a / gcd(a, b) * b;}
#pragma endregion // lcm
#pragma region
long long invMod(long long a,long long m=MOD){
long long x,y;
ext_gcd(a,m,x,y);
x %= m;
if(x<0) x += m;
return x;
}
/*
LL powMod(LL x,LL e,LL mod=MOD){
LL prod = 1%mod;
for(int i=63;i>=0;--i){
prod = prod*prod % mod;
if(e&1LL<<i)prod=prod*x%mod;
}
return prod;
}*/
LL powMod(LL num,LL n,LL mod=(LL)MOD){//(num**n)%mod
num %= mod;//
if( n == 0 ){
return (LL)1;
}
LL mul = num;
LL ans = (LL)1;
while(n){
if( n&1 ){
ans = (ans*mul)%mod;
}
mul = (mul*mul)%mod;
n >>= 1;
}
return ans;
}
/*
LL mod_inverse(LL num,LL mod=MOD){
return powMod(num,MOD-2,MOD);
}*/
#pragma endregion // powMod
#pragma region
template<class T>
vector<T> getDivisor(T n){
vector<T> v;
for(int i=1;i*i<=n;++i){
if( n%i == 0 ){
v.push_back(i);
if( i != n/i ){//
v.push_back(n/i);
}
}
}
sort(v.begin(), v.end());
return v;
}
#pragma endregion // getDivisor(n):O(√n)
#pragma endregion //math
//Utility:便
#pragma region
template<class T>
void UNIQUE(vector<T>& vec){
sort(vec.begin(),vec.end());
vec.erase(unique(vec.begin(),vec.end()),vec.end() );
}
#pragma endregion // sort erase unique
////////////////////////////////
#pragma region
long long bitcount64(long long bits)
{
bits = (bits & 0x5555555555555555) + (bits >> 1 & 0x5555555555555555);
bits = (bits & 0x3333333333333333) + (bits >> 2 & 0x3333333333333333);
bits = (bits & 0x0f0f0f0f0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f0f0f0f0f);
bits = (bits & 0x00ff00ff00ff00ff) + (bits >> 8 & 0x00ff00ff00ff00ff);
bits = (bits & 0x0000ffff0000ffff) + (bits >>16 & 0x0000ffff0000ffff);
return (bits & 0x00000000ffffffff) + (bits >>32 & 0x00000000ffffffff);
}
#pragma endregion //
////////////////////////////////
struct edge_base{int to;LL cost;};
edge_base make_edge_base(int to,LL cost){
edge_base ret = {to,cost};
return ret;
}
#pragma region GRL
#pragma region //
template<class T,class EDGE>
void dijkstra(int root,int V,vector<T>& dist,vector<int>& prev,
vector< vector<EDGE> > G ){
priority_queue<pair<T,int>,vector<pair<T,int> >,greater<pair<T,int> > > que;
dist.assign(V,LINF);
prev.assign(V,-1);
dist[root] = 0;
que.push(pair<T,int>(0,root));//
while( !que.empty() ){
pair<T,int> p = que.top();que.pop();
int v = p.second;
if( dist[v] < p.first ) continue;
for(int i=0;i < (int)G[v].size();++i){
EDGE e = G[v][i];
if( dist[e.to] > dist[v] + e.cost ){
dist[e.to] = dist[v] + e.cost;
prev[e.to] = v;
que.push(pair<T,int>(dist[e.to],e.to));
}
}
}
}
//,dijkstraprev
//http://ronly.hatenablog.com/entry/2017/06/17/161641
vector<int> get_path(vector<int>& prev,int t){
vector<int> path;
while(t!=-1){
path.push_back( t );
t = prev[t];
}
reverse(path.begin(),path.end());
return path;
}
#pragma endregion //:O(|E|log|V|)
#pragma region //
void warshall_floyd(vector<vector<LL> >& dist,int V,const LL inf=LINF){
for(int k=0;k<V;++k){
for(int i=0;i<V;++i){
if( dist[i][k] >= inf ) continue;
for(int j=0;j<V;++j){
if( dist[k][j] >= inf )continue;
dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]);
}
}
}
}
#pragma endregion //:O(|V|**3)
#pragma region
namespace FLOW{
//vector< vector<FLOW:edge> > G;
struct edge_flow : public edge_base{
LL cap;//LD cap;//
int rev;
};
edge_flow make_edge_flow(int to,LL cap,int rev,LL cost=1){
//edge_flow make_edge_flow(int to,LD cap,int rev,LL cost=1){
edge_flow ret;
ret.to = to;
ret.cost = cost;
ret.cap = cap;
ret.rev = rev;
return ret;
}
//*
class Graph{
public:
int V;
vector< vector<FLOW::edge_flow> > G;
vector< LL > dist;
vector< int > iter;
vector< bool > used;
void init(int v){
V = v;
G.resize(V);
}
void reset(){
iter.assign(V,0);
used.assign(V,false);
}
//directed graph
void add_edge(int from,int to,LL cap){
G[from].push_back( FLOW::make_edge_flow(to,cap,G[to].size()) );
G[to].push_back( FLOW::make_edge_flow(from,0,G[from].size()-1) );
}
private:
//sBFS
void bfs(int s){//
queue<int> que;
dist = vector<LL>(V,-1);
dist[s] = 0;
que.push(s);
while(!que.empty()){
int v = que.front();que.pop();
for(int i=0;i<(int)G[v].size();++i){
edge_flow &e = G[v][i];
if( e.cap > 0 && dist[e.to] < 0 ){
dist[e.to] = dist[v] + 1;
que.push(e.to);
}
}
}
}
private:
//DFS
LL dfs(int v,int t,LL f){
if( v==t ) return f;
for(int &i = iter[v];i<(int)G[v].size();++i){//?
FLOW::edge_flow &e = G[v][i];
if( e.cap>0 && dist[v] < dist[e.to]){
LL d = this->dfs(e.to, t, min(f,e.cap) );
if( d > 0){
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
public:
//st
LL max_flow(int s,int t){
LL flow = 0;
for(;;){
this->bfs(s);
if( dist[t] < 0 ) return flow;
iter = vector<int>(V,0);
LL f = this->dfs(s,t,LINF);
do{
flow += f;
f = this->dfs(s,t,LINF);
}while( f > 0 );
}
}
};
//*/
}
#pragma endregion //dinic :O(|E||V|^2)
#pragma region //
bool is_bipartite(int v,int c,vector< vector<int> >& G,vector<int>& Color){
Color[v] = c;
for(int i=0;i < (int)G[v].size();++i){//
if(Color[ G[v][i] ] == c ) return false;
if(Color[ G[v][i] ] == 0 &&
!is_bipartite(G[v][i],-c,G,Color)
){
return false;
}
}
return true;
}
bool is_bipartite(int Root,vector< vector<int> >& Graph){
int GraphSize = Graph.size();
vector<int> Color(GraphSize,0);
const int ColorNo = 1;
return is_bipartite(Root,ColorNo,Graph,Color);
}
#pragma endregion // is_bipartite(root,GraphList)
#pragma region
namespace matching{
//https://beta.atcoder.jp/contests/soundhound2018/tasks/soundhound2018_c
int V; //
vector< vector<int> > G;//
vector<int> match;//match[i]:[i]
vector<bool > used;//
void add_edge(int u,int v){
G[u].push_back(v);
G[v].push_back(u);
}
bool dfs(int v){
/*
https://mathtrain.jp/bipartitematching
12
[]
*/
used[v] = true;//dfsroot
int size = G[v].size();
for(int i=0;i<size;++i){
int u = G[v][i];//
int w = match[u];//
if( w<0 || ((used[w]==false) && dfs(w)) ){
/*
||
使&&
*/
match[v] = u;
match[u] = v;
return true;
}
}
return false;
}
int bipartite_matching(){
int res = 0;
match = vector<int>(V,-1);//
for(int v=0;v<V;++v){
if( match[v] < 0 ){
used = vector<bool>(V,false);
if( dfs(v) ){
++res;
}
}
}
return res;
}
}
#pragma endregion // bipartite_matching()
#pragma endregion //
#pragma region
vector< vector<LL> > NCK;//:0
//http://sugarknri.hatenablog.com/entry/2016/07/16/165715
void makeinv(vector<LL>& inv,const LL P){
int i;
//const int varMAX = max(100000,(int)inv.size());
const int varMAX = max(300010,(int)inv.size());
inv = vector<LL>( varMAX+1,0);
inv[1]=1;
for(i=2;i<=varMAX;i++){
inv[i] = (inv[P%i] * (P-P/i)%P ) % P;//OVF
//inv[i] = powMod(i,P-2,P);
}
}
LL nCk(LL N,LL k,LL mod = MOD){
static vector<LL> inv;//mod
if( inv.size() == 0 ){
makeinv(inv,mod);//mod
}
k = min(k,N-k);
if( k < 0 || k > N){return 0;}
if( k == 0 ){return 1;}
if( k == 1 ){return N%mod;}
LL ret = 1;
for(int i=1;i<=k;++i){
ret = (ret * ((N+1-i)%mod) )%mod;//ret*N:OVF
ret = (ret * inv[i] )%mod;
}
return ret;
}
LL nCk_once(LL N,LL k,LL mod = MOD){//mod
k = min(k,N-k);
if( k < 0 || k > N ){return 0;}
if( k == 0 ){return 1;}
if( k == 1 ){return N%mod;}
LL ret = 1;
LL A=1;
for(LL i=0;i<k;++i){
A = (A * ((N-i)%mod) ) % mod;
}
LL B=1;
for(LL i=2;i<=k;++i){
B = (B * (i%mod) ) % mod;
}
ret = ( A * powMod(B,mod-2,mod) ) % mod;
return ret;
}
#pragma endregion //nCk(,10^5)
#pragma region
LL nCk_base(int N,int K,LL mod=MOD){
if( K<0 || N < K ) return 0;//
K = min(K,N-K);
if( K==0 ){return 1%mod;}
if( K==1 ){return N%mod;}//%MOD;
if( N<=10000 && NCK[N][K] ){
return NCK[N][K];
}
//N使:nCk(N-1,k)
//N使 :nCk(N-1,k-1)
LL ans = (nCk_base(N-1,K)+nCk_base(N-1,K-1) )%mod;//%MOD;
if( N<=10000 ){
NCK[N][K] = ans;
}
return ans;
}
#pragma endregion // ?
#pragma region DSL
class UnionFind{
public:
int cNum;//
vector<int> parent;
vector<int> count;
vector< vector<int> > GList;
UnionFind(int n){
cNum = n;
parent = vector<int>(n);
count = vector<int>(n,1);
GList.resize(n);
for(int i=0;i<n;++i){
parent[i] = i;
GList[i].push_back(i);
}
}
int find(int x){
if( parent[x] == x ){return x;}
return parent[x] = find( parent[x] );
}
bool same(int x,int y){return find(x) == find(y);}
int Count(int x){return count[find(x)];}
void add(int x,int y){//union
x = find(x);
y = find(y);
if( x==y )return;
parent[x] = y;
count[y] += count[x];
if( GList[y].size() < GList[x].size() ){
swap(GList[x],GList[y]);
}
GList[y].insert( GList[y].end(),
GList[x].begin(),GList[x].end() );
}
};
#pragma endregion //UnionFind
#pragma region DSL
class BITree{//1-index
int N;
vector<LL> bit;
public:
BITree(int n){
N = n;
bit = vector<LL>(N+1,0);//1-index
}
void add(int a,LL w){//aw
if( a <= 0 || N < a) return;//a:[1,N]
for(int i=a;i<=N;i += i & -i){
bit[i] += w;
}
}
LL sum(int a){//[1,a],a:[1,N]
/*
1a1-index
*/
LL ret = 0;
if( a > N ) a = N;
for(int i=a; i > 0; i -= i & -i){
ret += bit[i];
}
return ret;
}
};
#pragma endregion //BIndexTree
#pragma region
template <typename T>
class segment_base{
int N;//
vector< T > dat1;
T VAL_E;//
T VAL_NULL;//
public:
segment_base(){};
segment_base(int n,T val_E ):N(n),VAL_E(val_E){
dat1.resize(2*n);
dat1.assign(2*n,val_E);//
}
void init(int n,T val_E,T val_N){
N = n;
VAL_E = val_E;
VAL_NULL = val_N;
int size = 2;
while(size<N){
size<<1;
}
N = size;
dat1.resize(2*N);
dat1.assign(2*N,val_E);
}
T SELECT(T& L,T& R){//
T ans;
ans = min(L,R);//
return ans;
}
//indexval,index"0-index"
void update(int i,T& val){
i += N-1;
dat1[i] = val;
while(i>0){
i = (i-1)/2;
dat1[i] = SELECT(dat1[i*2+1],dat1[i*2+2]);
}
}
//[L,R)SELECT
/*
調[a,b),k,[L,R)
*/
T query(int a,int b,int k,int L,int R){
if( R<=a || b<=L ){
return VAL_E;//
}
if( a<=L && R<=b && dat1[k] != VAL_NULL ){
return dat1[k];
}
T res = VAL_E;
int mid = (L+R)/2;
if( a < mid ) res = SELECT(res,query(a,b,k*2+1,L,mid) );
if( mid < b ) res = SELECT(res,query(a,b,k*2+2,mid,R) );
return res;
}
T query(int L,int R){
return query(L,R,0,0,N);
}
};
#pragma endregion //segment_tree
#pragma region
//
namespace mymat{
LL matMOD = MOD;//10^9 + 7
};
template<class T>
vector< vector<T> > operator*( vector<vector<T> >& A,vector< vector<T> >& B){
LL mod = mymat::matMOD;
int R = A.size();
int cen = A[0].size();
int C = B[0].size();
vector< vector<T> > ans(R,vector<T>(C,0) );
for(int row=0;row<R;++row){
for(int col=0;col<C;++col){
for(int inner=0;inner< cen;++inner){
/*ans[row][col] = (ans[row][col] + A[row][inner]*B[inner][col])%mod;
//ans[row][col] = (ans[row][col] + A[row][inner]*B[inner][col]);
ans[row][col] = (ans[row][col] + mod) % mod;
//
*/
ans[row][col] = (ans[row][col] + A[row][inner]*B[inner][col])%mod;
}
}
}
return ans;
}
template<class T>
vector< vector<T> > powMod(const vector< vector<T> >& mat,LL N,LL mod=MOD){
mymat::matMOD = mod;
int R = mat.size();
int C = mat[0].size();
//R==C
vector< vector<T> > I(R,vector<T>(C,0));//
for(int i=0;i<R && i<C;++i){
I[i][i] = 1;
}
if( N == 0 ){
return I;
}
vector< vector<T> > mul(R,vector<T>(C)),ans(R,vector<T>(C));
ans = I;
mul = mat;
while(N){
if( N & 1 ){
ans = ans*mul;
}
N >>= 1;
mul = mul*mul;
}
return ans;
}
#pragma endregion //
#pragma region
#include<time.h>
namespace TIME{
clock_t start,end;
void time_start(){
start = clock();
}
void time_set(int t){
end = start + t;
}
bool check(){
return clock() < end;
}
/*
unsigned long long get_cycle(){
return __rdtsc();
}
unsigned long long start,limit;
void time_start(){
start = get_cycle();
}
//
void time_set(unsigned long long num){limit = num;}
bool check(){return (get_cycle() < start+limit);}
*/
}
#pragma endregion //
#pragma region
namespace RAND{
unsigned long xor128(){
static unsigned long x=123456789,y=362436069,z=521288629,w=88675123;
unsigned long t;
t=(x^(x<<11));x=y;y=z;z=w;
return( w=(w^(w>>19))^(t^(t>>8)) );
}
LL getRAND(LL P){
return ((xor128()%P)+P)%P;
}
}
#pragma endregion //
#pragma region
#pragma endregion //
////////////////////////
void solve(){
// 123456789
//1000000007
const LL mod = 1000000007;
LL B,C,D;
cin>>B>>C>>D;
B %= mod;
C %= mod;
LL ans1 = (B*C)%mod;
LL ans2 = (ans1+B)%mod;
ans2 = (ans2*C) % mod;
if(D==1){
cout<<ans1<<endl;return;
}else if(D==2){
cout << ans2 << endl;return;
}
vector<vector<LL> > A(3,vector<LL>(3,0));
A[0][0]=C;A[0][1]=0;A[0][2]=(B*C)%mod;
A[1][0]=0;A[1][1]=C;A[1][2]=(B*C)%mod;
A[2][0]=0;A[2][1]=0;A[2][2]=1;
vector<vector<LL> > res;
res = powMod(A,D-2,mod);
vector<vector<LL> > X(3,vector<LL>(1));
X[0][0]=ans2;
X[1][0]=ans1;
X[2][0]=1;
vector<vector<LL> > ret;
ret = res*X;
cout << ret[0][0] << endl;
}
#pragma region main
signed main(void){
std::cin.tie(0);
std::ios::sync_with_stdio(false);
std::cout << std::fixed;//10
cout << setprecision(16);////coutcerr
solve();
}
#pragma endregion //main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0