結果
| 問題 |
No.876 Range Compress Query
|
| コンテスト | |
| ユーザー |
Oland
|
| 提出日時 | 2019-09-07 04:57:26 |
| 言語 | Java (openjdk 23) |
| 結果 |
AC
|
| 実行時間 | 423 ms / 2,000 ms |
| コード長 | 10,460 bytes |
| コンパイル時間 | 4,274 ms |
| コンパイル使用メモリ | 79,536 KB |
| 実行使用メモリ | 52,988 KB |
| 最終ジャッジ日時 | 2024-06-25 07:17:01 |
| 合計ジャッジ時間 | 8,095 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 18 |
ソースコード
import java.io.*;
import java.util.*;
@SuppressWarnings("unused")
public class Main {
FastScanner in = new FastScanner(System.in);
PrintWriter out = new PrintWriter(System.out);
final int MOD = (int)1e9+7;
long dup(long a, long b){return (a + b - 1) / b;}
void printlnYN(boolean b){out.println((b ? "Yes" : "No"));}
void solve() throws Exception{
int N = in.nextInt(), Q = in.nextInt();
long[] a = in.nextLongArray(N);
DualSegmentTree dst = new DualSegmentTree(a);
long[] init = new long[N-1];
for(int i = 0; i < N-1; i++) if(a[i] != a[i+1]) init[i] = 1;
SegmentTree st = new SegmentTree(init);
for (int i = 0; i < Q; i++) {
int q = in.nextInt();
int L = in.nextInt()-1, R = in.nextInt()-1;
if(q == 1){
long x = in.nextLong();
dst.setSegment(L, R+1, x);
if(L > 0){
if(dst.getPoint(L-1) != dst.getPoint(L)) st.setPoint(L-1, 1);
else st.setPoint(L-1, 0);
}
if(R+1 < N){
if(dst.getPoint(R) != dst.getPoint(R+1)) st.setPoint(R, 1);
else st.setPoint(R, 0);
}
}else{
out.println(st.getSegment(L, R)+1);
}
}
}
class SegmentTree{
int n;
long[] node;
/*二項演算で使える単位元*/
private long e = 0;
/*結合律が成り立つ、要素同士の二項演算*/
private long f(long e1, long e2){
return e1 + e2;
}
/*要素更新用の演算(可換でなくてもよい)*/
private long g(long nodeVal, long val){
return val;
}
/* 単位元で初期化 */
public SegmentTree(int sz){
n = 1;
while(n < sz) n *= 2;
node = new long[2*n];
Arrays.fill(node, e);
}
/* 元配列vでセグメント木を初期化 */
public SegmentTree(long[] v){
this(v.length);
for(int i = 0; i < v.length; i++)
node[i+n] = v[i];
for(int i = n-1; i > 0; i--)
node[i] = f(node[2*i+0], node[2*i+1]);
}
public long getPoint(int x){
return node[x + n];
}
/* 0-indexed:xの要素をg(node[x], val)に更新 */
public void setPoint(int x, long val){
x += n;
node[x] = g(node[x], val);
while(x > 1){
x = x / 2;
node[x] = f(node[2*x+0], node[2*x+1]);
}
}
/* 指定した区間[L,R)の区間演算の結果を求めるクエリ */
public long getSegment(int L, int R){
L += n;
R += n;
long resL = e, resR = e;
while (L < R) {
if ((L & 1) != 0){
resL = f(resL, node[L]);
L++;
}
if ((R & 1) != 0){
--R;
resR = f(resR, node[R]);
}
L >>= 1;
R >>= 1;
}
return f(resL, resR);
}
}
class DualSegmentTree{
int sz;
int n;
long[] node;
/*作用素で使える単位元*/
private long e = 0;
/*結合律が成り立ち、更新が可換であるような、各要素への作用素*/
private long f(long nodeVal, long val){
return nodeVal + val;
}
/* 単位元で初期化 */
public DualSegmentTree(int sz){
this.sz = sz;
n = 1;
while(n < sz) n *= 2;
node = new long[2*n];
Arrays.fill(node, e);
}
/* 元配列vでセグメント木を初期化 */
public DualSegmentTree(long[] v){
this(v.length);
for(int i = 0; i < v.length; i++){
node[i+n] = v[i];
}
}
/* 0-indexed:xの要素を取得する */
public long getPoint(int x){
x += n;
long res = node[x];
while(x > 1){
x = x / 2;
res = f(res, node[x]);
}
return res;
}
/* 指定した区間[L,R)に含まれるすべての要素に作用素を適用するクエリ */
public void setSegment(int L, int R, long val){
L += n;
R += n;
while (L < R) {
if ((L & 1) != 0){
node[L] = f(node[L], val);
L++;
}
if ((R & 1) != 0){
--R;
node[R] = f(node[R], val);
}
L >>= 1;
R >>= 1;
}
}
}
public static void main(String[] args) throws Exception {
new Main().m();
}
void m() throws Exception {
solve();
out.flush();
}
static class FastScanner {
Reader input;
FastScanner() {this(System.in);}
FastScanner(InputStream stream) {this.input = new BufferedReader(new InputStreamReader(stream));}
int nextInt() {return (int) nextLong();}
long nextLong() {
try {
int sign = 1;
int b = input.read();
while ((b < '0' || '9' < b) && b != '-' && b != '+') {
b = input.read();
}
if (b == '-') {
sign = -1;
b = input.read();
} else if (b == '+') {
b = input.read();
}
long ret = b - '0';
while (true) {
b = input.read();
if (b < '0' || '9' < b) return ret * sign;
ret *= 10;
ret += b - '0';
}
} catch (IOException e) {
e.printStackTrace();
return -1;
}
}
double nextDouble() {
try {
double sign = 1;
int b = input.read();
while ((b < '0' || '9' < b) && b != '-' && b != '+') {
b = input.read();
}
if (b == '-') {
sign = -1;
b = input.read();
} else if (b == '+') {
b = input.read();
}
double ret = b - '0';
while (true) {
b = input.read();
if (b < '0' || '9' < b) break;
ret *= 10;
ret += b - '0';
}
if (b != '.') return sign * ret;
double div = 1;
b = input.read();
while ('0' <= b && b <= '9') {
ret *= 10;
ret += b - '0';
div *= 10;
b = input.read();
}
return sign * ret / div;
} catch (IOException e) {
e.printStackTrace();
return Double.NaN;
}
}
char nextChar() {
try {
int b = input.read();
while (Character.isWhitespace(b)) {
b = input.read();
}
return (char) b;
} catch (IOException e) {
e.printStackTrace();
return 0;
}
}
String nextStr() {
try {
StringBuilder sb = new StringBuilder();
int b = input.read();
while (Character.isWhitespace(b)) {
b = input.read();
}
while (b != -1 && !Character.isWhitespace(b)) {
sb.append((char) b);
b = input.read();
}
return sb.toString();
} catch (IOException e) {
e.printStackTrace();
return "";
}
}
public int[] nextIntArray(int n) {
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = nextInt();
}
return res;
}
public int[] nextIntArrayDec(int n) {
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = nextInt() - 1;
}
return res;
}
public int[] nextIntArray1Index(int n) {
int[] res = new int[n + 1];
for (int i = 0; i < n; i++) {
res[i + 1] = nextInt();
}
return res;
}
public long[] nextLongArray(int n) {
long[] res = new long[n];
for (int i = 0; i < n; i++) {
res[i] = nextLong();
}
return res;
}
public long[] nextLongArrayDec(int n) {
long[] res = new long[n];
for (int i = 0; i < n; i++) {
res[i] = nextLong() - 1;
}
return res;
}
public long[] nextLongArray1Index(int n) {
long[] res = new long[n + 1];
for (int i = 0; i < n; i++) {
res[i + 1] = nextLong();
}
return res;
}
public double[] nextDoubleArray(int n) {
double[] res = new double[n];
for (int i = 0; i < n; i++) {
res[i] = nextDouble();
}
return res;
}
public Long[] nextWrapperLongArray(int n) {
Long[] res = new Long[n];
for (int i = 0; i < n; i++) {
res[i] = nextLong();
}
return res;
}
public Long[] nextWrapperLongArrayDec(int n) {
Long[] res = new Long[n];
for (int i = 0; i < n; i++) {
res[i] = nextLong() - 1;
}
return res;
}
public Long[] nextWrapperLongArray1Index(int n) {
Long[] res = new Long[n + 1];
for (int i = 0; i < n; i++) {
res[i + 1] = nextLong();
}
return res;
}
}
}
Oland