結果
| 問題 |
No.891 隣接3項間の漸化式
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-20 23:13:16 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 4,634 bytes |
| コンパイル時間 | 1,672 ms |
| コンパイル使用メモリ | 175,960 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-09-14 19:59:17 |
| 合計ジャッジ時間 | 2,845 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 39 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return 1;
}
return 0;
}
typedef long long int ll;
#define ALL(v) (v).begin(), (v).end()
#define RALL(v) (v).rbegin(), (v).rend()
#define endl "\n"
const double EPS = 1e-7;
const int INF = 1 << 30;
const ll LLINF = 1LL << 60;
const double PI = acos(-1);
const int MOD = 1000000007;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
//-------------------------------------
template <class T>
struct Matrix
{
vector<vector<T>> A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {}
Matrix(size_t n) : A(n, vector<T>(n, 0)){};
size_t height() const
{
return (A.size());
}
size_t width() const
{
return (A[0].size());
}
inline const vector<T> &operator[](int k) const
{
return (A.at(k));
}
inline vector<T> &operator[](int k)
{
return (A.at(k));
}
static Matrix I(size_t n)
{
Matrix mat(n);
for (int i = 0; i < n; i++)
mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B)
{
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
((*this)[i][j] += B[i][j]) %= MOD;
return (*this);
}
Matrix &operator-=(const Matrix &B)
{
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
((*this)[i][j] += MOD - B[i][j]) %= MOD;
return (*this);
}
Matrix &operator*=(const Matrix &B)
{
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector<vector<T>> C(n, vector<T>(m, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j] % MOD) % MOD;
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k)
{
Matrix B = Matrix::I(height());
while (k > 0)
{
if (k & 1)
B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const
{
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const
{
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const
{
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const
{
return (Matrix(*this) ^= k);
}
friend ostream &operator<<(ostream &os, Matrix &p)
{
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++)
{
os << "[";
for (int j = 0; j < m; j++)
{
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant()
{
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++)
{
int idx = -1;
for (int j = i; j < width(); j++)
{
if (B[j][i] != 0)
idx = j;
}
if (idx == -1)
return (0);
if (i != idx)
{
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++)
{
B[i][j] /= vv;
}
for (int j = i + 1; j < width(); j++)
{
T a = B[j][i];
for (int k = 0; k < width(); k++)
{
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
int main()
{
cin.tie(0);
ios::sync_with_stdio(false);
ll a, b, n;
cin >> a >> b >> n;
ll x0 = 0, x1 = 1;
Matrix<ll> mat(2);
vector<ll> tmp = {a, b};
vector<ll> tmp2 = {1, 0};
mat[0] = tmp;
mat[1] = tmp2;
mat ^= (n);
ll ans = mat[1][0] * x1 % MOD + mat[1][1] * x0 % MOD;
ans %= MOD;
cout << ans << endl;
}