結果

問題 No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
ユーザー leafirbyleafirby
提出日時 2020-05-01 17:35:47
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 8,185 bytes
コンパイル時間 2,046 ms
コンパイル使用メモリ 183,204 KB
実行使用メモリ 20,776 KB
最終ジャッジ日時 2024-11-06 01:58:08
合計ジャッジ時間 6,949 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//nyan氏のコード(epsf001-ex) https://www.hackerrank.com/contests/epsf001/challenges/epsf001-ex/submissions/code/1317785205
#include <bits/stdc++.h>
#define whlie while
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define rep(i,N) for(int i = 0; i < (N); i++)
#define repr(i,N) for(int i = (N) - 1; i >= 0; i--)
#define rep1(i,N) for(int i = 1; i <= (N) ; i++)
#define repr1(i,N) for(int i = (N) ; i > 0 ; i--)
#define each(x,v) for(auto& x : v)
#define all(v) (v).begin(),(v).end()
#define sz(v) ((int)(v).size())
#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)
#define inl(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)
using namespace std; void solve();
using ll = long long; using vl = vector<ll>;
using vi = vector<int>; using vvi = vector< vector<int> >;
constexpr int inf = 1001001001;
constexpr ll infLL = (1LL << 61) - 1;
struct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;
template<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }
template<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }
template<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; }
template<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }
template<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? " " : "") << v[i]; return os; }
template<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }
void in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}
void out(){cout << "\n";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << " "; out(u...);}
template<typename T>void die(T x){out(x); exit(0);}
#ifdef NyaanDebug
  #include "NyaanDebug.h"
  #define trc(...) do { cerr << #__VA_ARGS__ << " = "; dbg_out(__VA_ARGS__);} while(0)
  #define trca(v,N) do { cerr << #v << " = "; array_out(v , N);cout << endl;} while(0)
#else
  #define trc(...)
  #define trca(...)
  int main(){solve();}
#endif
//using P = pair<ll,ll>; using vp = vector<P>;
constexpr int MOD = /** 1000000007; //*/ 998244353;
////////////////

vector<ll> fac,finv,inv;
void COMinit(int MAX) {
  MAX++;
  fac.resize(MAX , 0);
  finv.resize(MAX , 0);
  inv.resize(MAX , 0);
  fac[0] = fac[1] = finv[0] = finv[1] = inv[1] = 1;
  for (int i = 2; i < MAX; i++){
    fac[i] = fac[i - 1] * i % MOD;
    inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
    finv[i] = finv[i - 1] * inv[i] % MOD;
  }
}
// nCk combination 
inline long long COM(int n,int k){
  if(n < k || k < 0 || n < 0) return 0;
  else return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
// nPk permutation
inline long long PER(int n,int k){
  if (n < k || k < 0 || n < 0) return 0;
  else return (fac[n] * finv[n - k]) % MOD;
}
// nHk homogeneous polynomial
inline long long HGP(int n,int k){
  if(n == 0 && k == 0) return 1; //
  else if(n < 1 || k < 0) return 0;
  else return fac[n + k - 1] * (finv[k] * finv[n - 1] % MOD) % MOD;
}

template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt< MOD >;

template< int mod >
struct NumberTheoreticTransform {

  int base, max_base, root;
  vector< int > rev, rts;

  NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {
    assert(mod >= 3 && mod % 2 == 1);
    auto tmp = mod - 1;
    max_base = 0;
    while(tmp % 2 == 0) tmp >>= 1, max_base++;
    root = 2;
    while(mod_pow(root, (mod - 1) >> 1) == 1) ++root;
    assert(mod_pow(root, mod - 1) == 1);
    root = mod_pow(root, (mod - 1) >> max_base);
  }

  inline int mod_pow(int x, int n) {
    int ret = 1;
    while(n > 0) {
      if(n & 1) ret = mul(ret, x);
      x = mul(x, x);
      n >>= 1;
    }
    return ret;
  }

  inline int inverse(int x) {
    return mod_pow(x, mod - 2);
  }

  inline unsigned add(unsigned x, unsigned y) {
    x += y;
    if(x >= mod) x -= mod;
    return x;
  }

  inline unsigned mul(unsigned a, unsigned b) {
    return 1ull * a * b % (unsigned long long) mod;
  }

  void ensure_base(int nbase) {
    if(nbase <= base) return;
    rev.resize(1 << nbase);
    rts.resize(1 << nbase);
    for(int i = 0; i < (1 << nbase); i++) {
      rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
    }
    assert(nbase <= max_base);
    while(base < nbase) {
      int z = mod_pow(root, 1 << (max_base - 1 - base));
      for(int i = 1 << (base - 1); i < (1 << base); i++) {
        rts[i << 1] = rts[i];
        rts[(i << 1) + 1] = mul(rts[i], z);
      }
      ++base;
    }
  }


  void ntt(vector< int > &a) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    int zeros = __builtin_ctz(n);
    ensure_base(zeros);
    int shift = base - zeros;
    for(int i = 0; i < n; i++) {
      if(i < (rev[i] >> shift)) {
        swap(a[i], a[rev[i] >> shift]);
      }
    }
    for(int k = 1; k < n; k <<= 1) {
      for(int i = 0; i < n; i += 2 * k) {
        for(int j = 0; j < k; j++) {
          int z = mul(a[i + j + k], rts[j + k]);
          a[i + j + k] = add(a[i + j], mod - z);
          a[i + j] = add(a[i + j], z);
        }
      }
    }
  }


  vector< int > multiply(vector< int > a, vector< int > b) {
    int need = a.size() + b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    ensure_base(nbase);
    int sz = 1 << nbase;
    a.resize(sz, 0);
    b.resize(sz, 0);
    ntt(a);
    ntt(b);
    int inv_sz = inverse(sz);
    for(int i = 0; i < sz; i++) {
      a[i] = mul(a[i], mul(b[i], inv_sz));
    }
    reverse(a.begin() + 1, a.end());
    ntt(a);
    a.resize(need);
    return a;
  }
};

void solve(){

  inl(N);

  // bicom init
  COMinit(N + 100);
  NumberTheoreticTransform<MOD> ntt;

  modint nya = 0;
  for(int i = 0 ; i <= N ; i++){
    if(i & 1) nya -= finv[i];
    else nya += finv[i];
  }
  nya *= fac[N];

  vi a({1 , 4 , 2});
  {
    ll M = N / 2;
    vi cur({1});
    while(M){
      if(M & 1) cur = ntt.multiply(cur , a);
      a = ntt.multiply(a , a);
      M >>= 1;
    }
    a.swap(cur);
  }
  if(N & 1) a = ntt.multiply(a , vi({1 , 1}));

  modint nyaa = 0;
  for(int i = 0 ; i < (int)a.size(); i++){
    nyaa += a[i] * ( (i & 1) ? MOD - fac[N - i] : fac[N - i]);
  }
  //trc(a);
  //trc(nya , nyaa);
  out( modint(fac[N]) - nya * 2 + nyaa );

}
0