結果
| 問題 |
No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
|
| コンテスト | |
| ユーザー |
leafirby
|
| 提出日時 | 2020-05-01 17:35:47 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,185 bytes |
| コンパイル時間 | 2,046 ms |
| コンパイル使用メモリ | 183,204 KB |
| 実行使用メモリ | 20,776 KB |
| 最終ジャッジ日時 | 2024-11-06 01:58:08 |
| 合計ジャッジ時間 | 6,949 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 3 |
| other | AC * 1 WA * 28 |
ソースコード
//nyan氏のコード(epsf001-ex) https://www.hackerrank.com/contests/epsf001/challenges/epsf001-ex/submissions/code/1317785205
#include <bits/stdc++.h>
#define whlie while
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define rep(i,N) for(int i = 0; i < (N); i++)
#define repr(i,N) for(int i = (N) - 1; i >= 0; i--)
#define rep1(i,N) for(int i = 1; i <= (N) ; i++)
#define repr1(i,N) for(int i = (N) ; i > 0 ; i--)
#define each(x,v) for(auto& x : v)
#define all(v) (v).begin(),(v).end()
#define sz(v) ((int)(v).size())
#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)
#define inl(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)
using namespace std; void solve();
using ll = long long; using vl = vector<ll>;
using vi = vector<int>; using vvi = vector< vector<int> >;
constexpr int inf = 1001001001;
constexpr ll infLL = (1LL << 61) - 1;
struct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;
template<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }
template<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }
template<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; }
template<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }
template<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? " " : "") << v[i]; return os; }
template<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }
void in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}
void out(){cout << "\n";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << " "; out(u...);}
template<typename T>void die(T x){out(x); exit(0);}
#ifdef NyaanDebug
#include "NyaanDebug.h"
#define trc(...) do { cerr << #__VA_ARGS__ << " = "; dbg_out(__VA_ARGS__);} while(0)
#define trca(v,N) do { cerr << #v << " = "; array_out(v , N);cout << endl;} while(0)
#else
#define trc(...)
#define trca(...)
int main(){solve();}
#endif
//using P = pair<ll,ll>; using vp = vector<P>;
constexpr int MOD = /** 1000000007; //*/ 998244353;
////////////////
vector<ll> fac,finv,inv;
void COMinit(int MAX) {
MAX++;
fac.resize(MAX , 0);
finv.resize(MAX , 0);
inv.resize(MAX , 0);
fac[0] = fac[1] = finv[0] = finv[1] = inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
// nCk combination
inline long long COM(int n,int k){
if(n < k || k < 0 || n < 0) return 0;
else return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
// nPk permutation
inline long long PER(int n,int k){
if (n < k || k < 0 || n < 0) return 0;
else return (fac[n] * finv[n - k]) % MOD;
}
// nHk homogeneous polynomial
inline long long HGP(int n,int k){
if(n == 0 && k == 0) return 1; //
else if(n < 1 || k < 0) return 0;
else return fac[n + k - 1] * (finv[k] * finv[n - 1] % MOD) % MOD;
}
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt< MOD >;
template< int mod >
struct NumberTheoreticTransform {
int base, max_base, root;
vector< int > rev, rts;
NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while(mod_pow(root, (mod - 1) >> 1) == 1) ++root;
assert(mod_pow(root, mod - 1) == 1);
root = mod_pow(root, (mod - 1) >> max_base);
}
inline int mod_pow(int x, int n) {
int ret = 1;
while(n > 0) {
if(n & 1) ret = mul(ret, x);
x = mul(x, x);
n >>= 1;
}
return ret;
}
inline int inverse(int x) {
return mod_pow(x, mod - 2);
}
inline unsigned add(unsigned x, unsigned y) {
x += y;
if(x >= mod) x -= mod;
return x;
}
inline unsigned mul(unsigned a, unsigned b) {
return 1ull * a * b % (unsigned long long) mod;
}
void ensure_base(int nbase) {
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
assert(nbase <= max_base);
while(base < nbase) {
int z = mod_pow(root, 1 << (max_base - 1 - base));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
rts[(i << 1) + 1] = mul(rts[i], z);
}
++base;
}
}
void ntt(vector< int > &a) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
int z = mul(a[i + j + k], rts[j + k]);
a[i + j + k] = add(a[i + j], mod - z);
a[i + j] = add(a[i + j], z);
}
}
}
}
vector< int > multiply(vector< int > a, vector< int > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
int inv_sz = inverse(sz);
for(int i = 0; i < sz; i++) {
a[i] = mul(a[i], mul(b[i], inv_sz));
}
reverse(a.begin() + 1, a.end());
ntt(a);
a.resize(need);
return a;
}
};
void solve(){
inl(N);
// bicom init
COMinit(N + 100);
NumberTheoreticTransform<MOD> ntt;
modint nya = 0;
for(int i = 0 ; i <= N ; i++){
if(i & 1) nya -= finv[i];
else nya += finv[i];
}
nya *= fac[N];
vi a({1 , 4 , 2});
{
ll M = N / 2;
vi cur({1});
while(M){
if(M & 1) cur = ntt.multiply(cur , a);
a = ntt.multiply(a , a);
M >>= 1;
}
a.swap(cur);
}
if(N & 1) a = ntt.multiply(a , vi({1 , 1}));
modint nyaa = 0;
for(int i = 0 ; i < (int)a.size(); i++){
nyaa += a[i] * ( (i & 1) ? MOD - fac[N - i] : fac[N - i]);
}
//trc(a);
//trc(nya , nyaa);
out( modint(fac[N]) - nya * 2 + nyaa );
}
leafirby