結果

問題 No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
ユーザー SumitacchanSumitacchan
提出日時 2020-05-29 22:12:18
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2,270 ms / 3,500 ms
コード長 8,678 bytes
コンパイル時間 2,039 ms
コンパイル使用メモリ 182,852 KB
実行使用メモリ 70,472 KB
最終ジャッジ日時 2024-11-06 05:08:09
合計ジャッジ時間 44,218 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 22 ms
27,704 KB
testcase_01 AC 22 ms
27,852 KB
testcase_02 AC 22 ms
27,876 KB
testcase_03 AC 65 ms
29,324 KB
testcase_04 AC 44 ms
28,664 KB
testcase_05 AC 44 ms
28,648 KB
testcase_06 AC 43 ms
28,660 KB
testcase_07 AC 42 ms
28,696 KB
testcase_08 AC 43 ms
28,680 KB
testcase_09 AC 44 ms
28,592 KB
testcase_10 AC 31 ms
28,204 KB
testcase_11 AC 39 ms
28,624 KB
testcase_12 AC 31 ms
28,220 KB
testcase_13 AC 2,214 ms
70,332 KB
testcase_14 AC 2,232 ms
70,420 KB
testcase_15 AC 2,229 ms
70,308 KB
testcase_16 AC 2,226 ms
70,436 KB
testcase_17 AC 2,270 ms
70,412 KB
testcase_18 AC 2,232 ms
70,472 KB
testcase_19 AC 2,237 ms
70,448 KB
testcase_20 AC 2,232 ms
70,444 KB
testcase_21 AC 2,211 ms
70,412 KB
testcase_22 AC 2,230 ms
70,292 KB
testcase_23 AC 2,204 ms
70,356 KB
testcase_24 AC 2,221 ms
70,436 KB
testcase_25 AC 2,244 ms
70,272 KB
testcase_26 AC 2,246 ms
70,392 KB
testcase_27 AC 2,227 ms
70,408 KB
testcase_28 AC 2,258 ms
70,416 KB
testcase_29 AC 2,244 ms
70,388 KB
testcase_30 AC 2,214 ms
70,448 KB
testcase_31 AC 22 ms
27,704 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
/*#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<typename T> using gpp_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename L> using gpp_map = tree<T, L, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T> using gpp_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;*/
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define FOR(i, begin, end) for(int i=(begin);i<(end);i++)
#define REP(i, n) FOR(i,0,n)
#define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--)
#define IREP(i, n) IFOR(i,0,n)
#define Sort(v) sort(v.begin(), v.end())
#define Reverse(v) reverse(v.begin(), v.end())
#define all(v) v.begin(),v.end()
#define SZ(v) ((int)v.size())
#define Lower_bound(v, x) distance(v.begin(), lower_bound(v.begin(), v.end(), x))
#define Upper_bound(v, x) distance(v.begin(), upper_bound(v.begin(), v.end(), x))
#define Max(a, b) a = max(a, b)
#define Min(a, b) a = min(a, b)
#define bit(n) (1LL<<(n))
#define bit_exist(x, n) ((x >> n) & 1)
#define debug(x) cout << #x << "=" << x << endl;
#define vdebug(v) { cout << #v << "=" << endl; REP(i_debug, v.size()){ cout << v[i_debug] << ","; } cout << endl; }
#define mdebug(m) { cout << #m << "=" << endl; REP(i_debug, m.size()){ REP(j_debug, m[i_debug].size()){ cout << m[i_debug][j_debug] << ","; } cout << endl;} }
#define Return(ans) { cout << (ans) << endl; return 0; }
#define pb push_back
#define f first
#define s second
#define int long long
#define INF 1000000000000000000
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; }
template<typename T> ostream &operator<<(ostream &os, vector<T> &v){ for(int i = 0; i < v.size(); i++) { cout << v[i]; if(i != v.size() - 1) cout << endl; }; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, pair<T1, T2> p){ cout << '(' << p.first << ',' << p.second << ')'; return os; }
template<typename T> void Out(T x) { cout << x << endl; }
template<typename T1, typename T2> void Ans(bool f, T1 y, T2 n) { if(f) Out(y); else Out(n); }

using vec = vector<int>;
using mat = vector<vec>;
using Pii = pair<int, int>;
using PiP = pair<int, Pii>;
using PPi = pair<Pii, int>;
using Pdi = pair<double, int>;
using bools = vector<bool>;
using pairs = vector<Pii>;

//int dx[4] = {1,0,-1,0};
//int dy[4] = {0,1,0,-1};
//char d[4] = {'D','R','U','L'};

//const int mod = 1000000007;
const int mod = 998244353;
//#define Add(x, y) x = (x + (y)) % mod
//#define Mult(x, y) x = (x * (y)) % mod

template<long long MOD>
struct ModInt{

    using ll = long long;
    ll val;

    void setval(ll v) { val = v % MOD; };
    ModInt(): val(0) {}
    ModInt(ll v) { setval(v); };

    ModInt operator+(const ModInt &x) const { return ModInt(val + x.val); }
    ModInt operator-(const ModInt &x) const { return ModInt(val - x.val + MOD); }
    ModInt operator*(const ModInt &x) const { return ModInt(val * x.val); }
    ModInt operator/(const ModInt &x) const { return *this * x.inv(); }
    ModInt operator-() const { return ModInt(MOD - val); }
    ModInt operator+=(const ModInt &x) { return *this = *this + x; }
    ModInt operator-=(const ModInt &x) { return *this = *this - x; }
    ModInt operator*=(const ModInt &x) { return *this = *this * x; }
    ModInt operator/=(const ModInt &x) { return *this = *this / x; }

    friend ostream& operator<<(ostream &os, const ModInt &x) { os << x.val; return os; }
    friend istream& operator>>(istream &is, ModInt &x) { is >> x.val; x.val = (x.val % MOD + MOD) % MOD; return is; }

    ModInt pow(ll n) const {
        ModInt a = 1;
        if(n == 0) return a;
        int i0 = 64 - __builtin_clzll(n);
        for(int i = i0 - 1; i >= 0; i--){
            a = a * a;
            if((n >> i) & 1) a *= (*this); 
        }
        return a;
    }
    ModInt inv() const { return this->pow(MOD - 2); }
};

using mint = ModInt<mod>; mint pow(mint x, long long n) { return x.pow(n); }
//using mint = double; //for debug
using mvec = vector<mint>;
using mmat = vector<mvec>;

struct Combination{

    vector<mint> fact, invfact;

    Combination(int N){
        fact = vector<mint>({mint(1)});
        invfact = vector<mint>({mint(1)});
        fact_initialize(N);
    }

    void fact_initialize(int N){
        int i0 = fact.size();
        if(i0 >= N + 1) return;
        fact.resize(N + 1);
        invfact.resize(N + 1);
        for(int i = i0; i <= N; i++) fact[i] = fact[i - 1] * i;
        invfact[N] = (mint)1 / fact[N];
        for(int i = N - 1; i >= i0; i--) invfact[i] = invfact[i + 1] * (i + 1); 
    }

    mint nCr(int n, int r){
        if(n < 0 || r < 0 || r > n) return mint(0);
        if(fact.size() < n + 1) fact_initialize(n);
        return fact[n] * invfact[r] * invfact[n - r];
    }

    mint nPr(int n, int r){
        if(n < 0 || r < 0 || r > n) return mint(0);
        if(fact.size() < n + 1) fact_initialize(n);
        return fact[n] * invfact[n - r];
    }

    mint Catalan(int n){
        if(n < 0) return 0;
        else if(n == 0) return 1;
        if(fact.size() < 2 * n + 1) fact_initialize(2 * n);
        return fact[2 * n] * invfact[n + 1] * invfact[n];
    }

};

//N=2^n, e^N=1, e^k!=1 (k<N)
template<long long MOD>
class NTT
{
private:
    vector<ModInt<MOD>> f, f_tmp;

    void forward_exec(int l, int r, int t){
        if(t == n) return;
        int sz = (r - l) >> 1;
        REP(i, sz){
            f_tmp[l + i] = f[l + 2 * i];
            f_tmp[l + sz + i] = f[l + 2 * i + 1];
        }
        FOR(i, l, r) f[i] = f_tmp[i];
        forward_exec(l, l + sz, t + 1);
        forward_exec(l + sz, r, t + 1);

        REP(i, sz) f_tmp[l + i] = f[l + i] + f[l + sz + i] * pow_e[i << t];
        REP(i, sz) f_tmp[l + sz + i] = f[l + i] + f[l + sz + i] * pow_e[(sz + i) << t];
        FOR(i, l, r) f[i] = f_tmp[i];
    }

    void inverse_exec(int l, int r, int t){
        if(t == n) return;
        int sz = (r - l) / 2;
        REP(i, sz){
            f_tmp[l + i] = f[l + 2 * i];
            f_tmp[l + sz + i] = f[l + 2 * i + 1];
        }
        FOR(i, l, r) f[i] = f_tmp[i];
        inverse_exec(l, l + sz, t + 1);
        inverse_exec(l + sz, r, t + 1);

        REP(i, sz) f_tmp[l + i] = f[l + i] + f[l + sz + i] * pow_e[N - (i << t)];
        REP(i, sz) f_tmp[l + sz + i] = f[l + i] + f[l + sz + i] * pow_e[N - ((sz + i) << t)];
        FOR(i, l, r) f[i] = f_tmp[i];
    }

public:

    int N, n;
    ModInt<MOD> e, inv_N;
    vector<ModInt<MOD>> pow_e;

    NTT(){}

    NTT(int N, ModInt<MOD> e): N(N), e(e){

        n = 31 - __builtin_clz((signed)N);
        assert(N == (1 << n));

        assert((e.pow(N)).val == 1);
        pow_e.resize(N + 1);
        pow_e[0] = 1;
        bool e_valid = true;
        FOR(i, 1, N){
            pow_e[i] = pow_e[i - 1] * e;
            if(pow_e[i].val == 1) e_valid = false;
        }
        pow_e[N] = 1;
        assert(e_valid);

        inv_N = ((ModInt<MOD>)N).inv();

        f.resize(N);
        f_tmp.resize(N);
    }

    void exec(vector<ModInt<MOD>> &F, bool inverse = false){
        assert(F.size() == N);
        f.swap(F);
        if(!inverse) forward_exec(0, N, 0);
        else inverse_exec(0, N, 0);
        F.swap(f);
        if(inverse){
            REP(i, N) F[i] *= inv_N;
        }
    }

    vector<ModInt<MOD>> convolution(vector<ModInt<MOD>> A, vector<ModInt<MOD>> B){
        exec(A);
        exec(B);
        vector<ModInt<MOD>> C(N);
        REP(i, N) C[i] = A[i] * B[i];
        exec(C, true);
        return C;
    }
};

signed main(){

    int N, Q; cin >> N >> Q;
    vec A(N); cin >> A;
    vec B(Q); cin >> B;

    NTT<mod> ntt[20];
    REP(i, 20){
        mint e = pow((mint)3, (mod - 1) >> i);
        ntt[i] = NTT<mod>(bit(i), e);
    }

    int n = 1;
    while(N > bit(n)) n++;
    mmat dp(bit(n), mvec(2));
    REP(i, bit(n)){
        if(i < N){
            dp[i][0] = A[i] - 1;
            dp[i][1] = 1;
        }else{
            dp[i][0] = 1;
            dp[i][1] = 0;
        }
    }
    //mdebug(dp);
    
    REP(i, n){
        int m = SZ(dp) / 2;
        int sz = bit(i + 2);
        mmat dq(m, mvec(sz));
        mvec a(sz, 0), b(sz, 0);
        REP(j, m){
            REP(k, SZ(dp[2 * j])) a[k] = dp[2 * j][k];
            REP(k, SZ(dp[2 * j + 1])) b[k] = dp[2 * j + 1][k];
            dq[j] = ntt[i + 2].convolution(a, b);
        }
        dp.swap(dq);
    }

    REP(i, Q) Out(dp[0][B[i]]);

    return 0;
}
0