結果
問題 | No.1068 #いろいろな色 / Red and Blue and more various colors (Hard) |
ユーザー | Sumitacchan |
提出日時 | 2020-05-29 22:12:18 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2,270 ms / 3,500 ms |
コード長 | 8,678 bytes |
コンパイル時間 | 2,039 ms |
コンパイル使用メモリ | 182,852 KB |
実行使用メモリ | 70,472 KB |
最終ジャッジ日時 | 2024-11-06 05:08:09 |
合計ジャッジ時間 | 44,218 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 22 ms
27,704 KB |
testcase_01 | AC | 22 ms
27,852 KB |
testcase_02 | AC | 22 ms
27,876 KB |
testcase_03 | AC | 65 ms
29,324 KB |
testcase_04 | AC | 44 ms
28,664 KB |
testcase_05 | AC | 44 ms
28,648 KB |
testcase_06 | AC | 43 ms
28,660 KB |
testcase_07 | AC | 42 ms
28,696 KB |
testcase_08 | AC | 43 ms
28,680 KB |
testcase_09 | AC | 44 ms
28,592 KB |
testcase_10 | AC | 31 ms
28,204 KB |
testcase_11 | AC | 39 ms
28,624 KB |
testcase_12 | AC | 31 ms
28,220 KB |
testcase_13 | AC | 2,214 ms
70,332 KB |
testcase_14 | AC | 2,232 ms
70,420 KB |
testcase_15 | AC | 2,229 ms
70,308 KB |
testcase_16 | AC | 2,226 ms
70,436 KB |
testcase_17 | AC | 2,270 ms
70,412 KB |
testcase_18 | AC | 2,232 ms
70,472 KB |
testcase_19 | AC | 2,237 ms
70,448 KB |
testcase_20 | AC | 2,232 ms
70,444 KB |
testcase_21 | AC | 2,211 ms
70,412 KB |
testcase_22 | AC | 2,230 ms
70,292 KB |
testcase_23 | AC | 2,204 ms
70,356 KB |
testcase_24 | AC | 2,221 ms
70,436 KB |
testcase_25 | AC | 2,244 ms
70,272 KB |
testcase_26 | AC | 2,246 ms
70,392 KB |
testcase_27 | AC | 2,227 ms
70,408 KB |
testcase_28 | AC | 2,258 ms
70,416 KB |
testcase_29 | AC | 2,244 ms
70,388 KB |
testcase_30 | AC | 2,214 ms
70,448 KB |
testcase_31 | AC | 22 ms
27,704 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; /*#include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace __gnu_pbds; template<typename T> using gpp_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; template<typename T, typename L> using gpp_map = tree<T, L, less<T>, rb_tree_tag, tree_order_statistics_node_update>; template<typename T> using gpp_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;*/ struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define FOR(i, begin, end) for(int i=(begin);i<(end);i++) #define REP(i, n) FOR(i,0,n) #define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--) #define IREP(i, n) IFOR(i,0,n) #define Sort(v) sort(v.begin(), v.end()) #define Reverse(v) reverse(v.begin(), v.end()) #define all(v) v.begin(),v.end() #define SZ(v) ((int)v.size()) #define Lower_bound(v, x) distance(v.begin(), lower_bound(v.begin(), v.end(), x)) #define Upper_bound(v, x) distance(v.begin(), upper_bound(v.begin(), v.end(), x)) #define Max(a, b) a = max(a, b) #define Min(a, b) a = min(a, b) #define bit(n) (1LL<<(n)) #define bit_exist(x, n) ((x >> n) & 1) #define debug(x) cout << #x << "=" << x << endl; #define vdebug(v) { cout << #v << "=" << endl; REP(i_debug, v.size()){ cout << v[i_debug] << ","; } cout << endl; } #define mdebug(m) { cout << #m << "=" << endl; REP(i_debug, m.size()){ REP(j_debug, m[i_debug].size()){ cout << m[i_debug][j_debug] << ","; } cout << endl;} } #define Return(ans) { cout << (ans) << endl; return 0; } #define pb push_back #define f first #define s second #define int long long #define INF 1000000000000000000 template<typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; } template<typename T> ostream &operator<<(ostream &os, vector<T> &v){ for(int i = 0; i < v.size(); i++) { cout << v[i]; if(i != v.size() - 1) cout << endl; }; return os; } template<typename T1, typename T2> ostream &operator<<(ostream &os, pair<T1, T2> p){ cout << '(' << p.first << ',' << p.second << ')'; return os; } template<typename T> void Out(T x) { cout << x << endl; } template<typename T1, typename T2> void Ans(bool f, T1 y, T2 n) { if(f) Out(y); else Out(n); } using vec = vector<int>; using mat = vector<vec>; using Pii = pair<int, int>; using PiP = pair<int, Pii>; using PPi = pair<Pii, int>; using Pdi = pair<double, int>; using bools = vector<bool>; using pairs = vector<Pii>; //int dx[4] = {1,0,-1,0}; //int dy[4] = {0,1,0,-1}; //char d[4] = {'D','R','U','L'}; //const int mod = 1000000007; const int mod = 998244353; //#define Add(x, y) x = (x + (y)) % mod //#define Mult(x, y) x = (x * (y)) % mod template<long long MOD> struct ModInt{ using ll = long long; ll val; void setval(ll v) { val = v % MOD; }; ModInt(): val(0) {} ModInt(ll v) { setval(v); }; ModInt operator+(const ModInt &x) const { return ModInt(val + x.val); } ModInt operator-(const ModInt &x) const { return ModInt(val - x.val + MOD); } ModInt operator*(const ModInt &x) const { return ModInt(val * x.val); } ModInt operator/(const ModInt &x) const { return *this * x.inv(); } ModInt operator-() const { return ModInt(MOD - val); } ModInt operator+=(const ModInt &x) { return *this = *this + x; } ModInt operator-=(const ModInt &x) { return *this = *this - x; } ModInt operator*=(const ModInt &x) { return *this = *this * x; } ModInt operator/=(const ModInt &x) { return *this = *this / x; } friend ostream& operator<<(ostream &os, const ModInt &x) { os << x.val; return os; } friend istream& operator>>(istream &is, ModInt &x) { is >> x.val; x.val = (x.val % MOD + MOD) % MOD; return is; } ModInt pow(ll n) const { ModInt a = 1; if(n == 0) return a; int i0 = 64 - __builtin_clzll(n); for(int i = i0 - 1; i >= 0; i--){ a = a * a; if((n >> i) & 1) a *= (*this); } return a; } ModInt inv() const { return this->pow(MOD - 2); } }; using mint = ModInt<mod>; mint pow(mint x, long long n) { return x.pow(n); } //using mint = double; //for debug using mvec = vector<mint>; using mmat = vector<mvec>; struct Combination{ vector<mint> fact, invfact; Combination(int N){ fact = vector<mint>({mint(1)}); invfact = vector<mint>({mint(1)}); fact_initialize(N); } void fact_initialize(int N){ int i0 = fact.size(); if(i0 >= N + 1) return; fact.resize(N + 1); invfact.resize(N + 1); for(int i = i0; i <= N; i++) fact[i] = fact[i - 1] * i; invfact[N] = (mint)1 / fact[N]; for(int i = N - 1; i >= i0; i--) invfact[i] = invfact[i + 1] * (i + 1); } mint nCr(int n, int r){ if(n < 0 || r < 0 || r > n) return mint(0); if(fact.size() < n + 1) fact_initialize(n); return fact[n] * invfact[r] * invfact[n - r]; } mint nPr(int n, int r){ if(n < 0 || r < 0 || r > n) return mint(0); if(fact.size() < n + 1) fact_initialize(n); return fact[n] * invfact[n - r]; } mint Catalan(int n){ if(n < 0) return 0; else if(n == 0) return 1; if(fact.size() < 2 * n + 1) fact_initialize(2 * n); return fact[2 * n] * invfact[n + 1] * invfact[n]; } }; //N=2^n, e^N=1, e^k!=1 (k<N) template<long long MOD> class NTT { private: vector<ModInt<MOD>> f, f_tmp; void forward_exec(int l, int r, int t){ if(t == n) return; int sz = (r - l) >> 1; REP(i, sz){ f_tmp[l + i] = f[l + 2 * i]; f_tmp[l + sz + i] = f[l + 2 * i + 1]; } FOR(i, l, r) f[i] = f_tmp[i]; forward_exec(l, l + sz, t + 1); forward_exec(l + sz, r, t + 1); REP(i, sz) f_tmp[l + i] = f[l + i] + f[l + sz + i] * pow_e[i << t]; REP(i, sz) f_tmp[l + sz + i] = f[l + i] + f[l + sz + i] * pow_e[(sz + i) << t]; FOR(i, l, r) f[i] = f_tmp[i]; } void inverse_exec(int l, int r, int t){ if(t == n) return; int sz = (r - l) / 2; REP(i, sz){ f_tmp[l + i] = f[l + 2 * i]; f_tmp[l + sz + i] = f[l + 2 * i + 1]; } FOR(i, l, r) f[i] = f_tmp[i]; inverse_exec(l, l + sz, t + 1); inverse_exec(l + sz, r, t + 1); REP(i, sz) f_tmp[l + i] = f[l + i] + f[l + sz + i] * pow_e[N - (i << t)]; REP(i, sz) f_tmp[l + sz + i] = f[l + i] + f[l + sz + i] * pow_e[N - ((sz + i) << t)]; FOR(i, l, r) f[i] = f_tmp[i]; } public: int N, n; ModInt<MOD> e, inv_N; vector<ModInt<MOD>> pow_e; NTT(){} NTT(int N, ModInt<MOD> e): N(N), e(e){ n = 31 - __builtin_clz((signed)N); assert(N == (1 << n)); assert((e.pow(N)).val == 1); pow_e.resize(N + 1); pow_e[0] = 1; bool e_valid = true; FOR(i, 1, N){ pow_e[i] = pow_e[i - 1] * e; if(pow_e[i].val == 1) e_valid = false; } pow_e[N] = 1; assert(e_valid); inv_N = ((ModInt<MOD>)N).inv(); f.resize(N); f_tmp.resize(N); } void exec(vector<ModInt<MOD>> &F, bool inverse = false){ assert(F.size() == N); f.swap(F); if(!inverse) forward_exec(0, N, 0); else inverse_exec(0, N, 0); F.swap(f); if(inverse){ REP(i, N) F[i] *= inv_N; } } vector<ModInt<MOD>> convolution(vector<ModInt<MOD>> A, vector<ModInt<MOD>> B){ exec(A); exec(B); vector<ModInt<MOD>> C(N); REP(i, N) C[i] = A[i] * B[i]; exec(C, true); return C; } }; signed main(){ int N, Q; cin >> N >> Q; vec A(N); cin >> A; vec B(Q); cin >> B; NTT<mod> ntt[20]; REP(i, 20){ mint e = pow((mint)3, (mod - 1) >> i); ntt[i] = NTT<mod>(bit(i), e); } int n = 1; while(N > bit(n)) n++; mmat dp(bit(n), mvec(2)); REP(i, bit(n)){ if(i < N){ dp[i][0] = A[i] - 1; dp[i][1] = 1; }else{ dp[i][0] = 1; dp[i][1] = 0; } } //mdebug(dp); REP(i, n){ int m = SZ(dp) / 2; int sz = bit(i + 2); mmat dq(m, mvec(sz)); mvec a(sz, 0), b(sz, 0); REP(j, m){ REP(k, SZ(dp[2 * j])) a[k] = dp[2 * j][k]; REP(k, SZ(dp[2 * j + 1])) b[k] = dp[2 * j + 1][k]; dq[j] = ntt[i + 2].convolution(a, b); } dp.swap(dq); } REP(i, Q) Out(dp[0][B[i]]); return 0; }