結果

問題 No.1116 Cycles of Dense Graph
ユーザー akakimidori
提出日時 2020-07-17 22:11:14
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 72 ms / 2,000 ms
コード長 12,830 bytes
コンパイル時間 13,421 ms
コンパイル使用メモリ 377,640 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-30 00:25:17
合計ジャッジ時間 15,399 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 38
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

//---------- begin union_find ----------
#[allow(dead_code)]
mod union_find {
use std;
pub struct UF {
parent: Vec<usize>,
size: Vec<usize>,
stack: Vec<Option<(usize, usize)>>,
}
impl UF {
pub fn new(n: usize) -> UF {
let mut u = UF {
parent: vec![0; n],
size: vec![1; n],
stack: vec![],
};
u.init();
u
}
pub fn init(&mut self) {
for (i, p) in self.parent.iter_mut().enumerate() {
*p = i;
}
self.size.clear();
self.size.resize(self.parent.len(), 1);
self.stack.clear();
}
pub fn root(&mut self, mut x: usize) -> usize {
while self.parent[x] != x {
x = self.parent[x];
}
x
}
pub fn same(&mut self, x: usize, y: usize) -> bool {
self.root(x) == self.root(y)
}
pub fn unite(&mut self, mut x: usize, mut y: usize) -> Option<(usize, usize)> {
x = self.root(x);
y = self.root(y);
if x == y {
self.stack.push(None);
return None;
}
if self.size[x] < self.size[y] {
std::mem::swap(&mut x, &mut y);
}
self.size[x] += self.size[y];
self.parent[y] = x;
self.stack.push(Some((x, y)));
Some((x, y))
}
pub fn undo(&mut self) -> Option<(usize, usize)> {
self.stack
.pop()
.expect("union find undo error: stack is empty")
.map(|(x, y)| {
self.size[x] -= self.size[y];
self.parent[y] = y;
(x, y)
})
}
pub fn get_size(&mut self, x: usize) -> usize {
let r = self.root(x);
self.size[r]
}
pub fn parent(&self, x: usize) -> Option<usize> {
if self.parent[x] == x {
None
} else {
Some(self.parent[x])
}
}
}
}
//---------- end union_find ----------
// ---------- begin ModInt ----------
mod modint {
#[allow(dead_code)]
pub struct Mod;
impl ConstantModulo for Mod {
const MOD: u32 = 998_244_353;
}
#[allow(dead_code)]
pub struct StaticMod;
static mut STATIC_MOD: u32 = 0;
impl Modulo for StaticMod {
fn modulo() -> u32 {
unsafe { STATIC_MOD }
}
}
#[allow(dead_code)]
impl StaticMod {
pub fn set_modulo(p: u32) {
unsafe {
STATIC_MOD = p;
}
}
}
use std::marker::*;
use std::ops::*;
pub trait Modulo {
fn modulo() -> u32;
}
pub trait ConstantModulo {
const MOD: u32;
}
impl<T> Modulo for T
where
T: ConstantModulo,
{
fn modulo() -> u32 {
T::MOD
}
}
pub struct ModularInteger<T>(pub u32, PhantomData<T>);
impl<T> Clone for ModularInteger<T> {
fn clone(&self) -> Self {
ModularInteger::new_unchecked(self.0)
}
}
impl<T> Copy for ModularInteger<T> {}
impl<T: Modulo> Add for ModularInteger<T> {
type Output = ModularInteger<T>;
fn add(self, rhs: Self) -> Self::Output {
let mut d = self.0 + rhs.0;
if d >= T::modulo() {
d -= T::modulo();
}
ModularInteger::new_unchecked(d)
}
}
impl<T: Modulo> AddAssign for ModularInteger<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Modulo> Sub for ModularInteger<T> {
type Output = ModularInteger<T>;
fn sub(self, rhs: Self) -> Self::Output {
let mut d = T::modulo() + self.0 - rhs.0;
if d >= T::modulo() {
d -= T::modulo();
}
ModularInteger::new_unchecked(d)
}
}
impl<T: Modulo> SubAssign for ModularInteger<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Modulo> Mul for ModularInteger<T> {
type Output = ModularInteger<T>;
fn mul(self, rhs: Self) -> Self::Output {
let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
ModularInteger::new_unchecked(v as u32)
}
}
impl<T: Modulo> MulAssign for ModularInteger<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Modulo> Neg for ModularInteger<T> {
type Output = ModularInteger<T>;
fn neg(self) -> Self::Output {
if self.0 == 0 {
Self::zero()
} else {
Self::new_unchecked(T::modulo() - self.0)
}
}
}
impl<T> std::fmt::Display for ModularInteger<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T: Modulo> std::str::FromStr for ModularInteger<T> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModularInteger::new(val))
}
}
impl<T: Modulo> From<usize> for ModularInteger<T> {
fn from(val: usize) -> ModularInteger<T> {
ModularInteger::new_unchecked((val % T::modulo() as usize) as u32)
}
}
impl<T: Modulo> From<i64> for ModularInteger<T> {
fn from(val: i64) -> ModularInteger<T> {
let m = T::modulo() as i64;
ModularInteger::new((val % m + m) as u32)
}
}
#[allow(dead_code)]
impl<T> ModularInteger<T> {
fn new_unchecked(d: u32) -> Self {
ModularInteger(d, PhantomData)
}
pub fn zero() -> Self {
ModularInteger::new_unchecked(0)
}
pub fn one() -> Self {
ModularInteger::new_unchecked(1)
}
pub fn is_zero(&self) -> bool {
self.0 == 0
}
}
#[allow(dead_code)]
impl<T: Modulo> ModularInteger<T> {
pub fn new(d: u32) -> Self {
ModularInteger::new_unchecked(d % T::modulo())
}
pub fn pow(&self, mut n: u64) -> Self {
let mut t = Self::one();
let mut s = *self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(&self) -> Self {
assert!(self.0 != 0);
self.pow(T::modulo() as u64 - 2)
}
}
// ---------- begin Precalc ----------
#[allow(dead_code)]
pub struct Precalc<T> {
inv: Vec<ModularInteger<T>>,
fact: Vec<ModularInteger<T>>,
ifact: Vec<ModularInteger<T>>,
}
#[allow(dead_code)]
impl<T: Modulo> Precalc<T> {
pub fn new(n: usize) -> Precalc<T> {
let mut inv = vec![ModularInteger::one(); n + 1];
let mut fact = vec![ModularInteger::one(); n + 1];
let mut ifact = vec![ModularInteger::one(); n + 1];
for i in 2..(n + 1) {
fact[i] = fact[i - 1] * ModularInteger::new_unchecked(i as u32);
}
ifact[n] = fact[n].inv();
if n > 0 {
inv[n] = ifact[n] * fact[n - 1];
}
for i in (1..n).rev() {
ifact[i] = ifact[i + 1] * ModularInteger::new_unchecked((i + 1) as u32);
inv[i] = ifact[i] * fact[i - 1];
}
Precalc {
inv: inv,
fact: fact,
ifact: ifact,
}
}
pub fn inv(&self, n: usize) -> ModularInteger<T> {
assert!(n > 0);
self.inv[n]
}
pub fn fact(&self, n: usize) -> ModularInteger<T> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModularInteger<T> {
self.ifact[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModularInteger<T> {
if k > n {
return ModularInteger::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn comb(&self, n: usize, k: usize) -> ModularInteger<T> {
if k > n {
return ModularInteger::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end Precalc ----------
#[allow(dead_code)]
pub fn mod_pow(r: u64, mut n: u64, m: u64) -> u64 {
let mut t = 1 % m;
let mut s = r % m;
while n > 0 {
if n & 1 == 1 {
t = t * s % m;
}
s = s * s % m;
n >>= 1;
}
t
}
}
// ---------- end ModInt ----------
//https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
//
use modint::*;
type ModInt = ModularInteger<Mod>;
fn run() {
input! {
n: usize,
m: usize,
e: [(usize1, usize1); m],
}
let pc = Precalc::new(n + 15);
//ans += sign * pc.fact(v - 1) * ModInt::new(2).pow((v - 1) as u64) * pc.perm(n - used, k) * pc.comb(k + v - 1, v - 1);
let a = 30;
let b = 15;
let mut memo = vec![vec![ModInt::zero(); a + 1]; b + 1];// v, used
for i in 1..=b {
for j in 1..=a {
let mut sum = ModInt::zero();
for k in 0.. {
if k + j < 3 {
continue;
}
if j + k > n {
break;
}
sum += pc.perm(n - j, k) * pc.comb(k + i - 1, i - 1);
}
memo[i][j] = sum * pc.fact(i - 1) * ModInt::new(2).pow((i - 1) as u64);
}
}
let mut u = union_find::UF::new(n);
let mut ans = ModInt::zero();
for i in 3..=n {
ans += pc.comb(n, i) * pc.fact(i - 1) * ModInt::from(2usize).inv();
}
for i in 1..(1 << m) {
let mut deg = std::collections::BTreeMap::new();
let mut set = vec![];
let mut sign = ModInt::one();
let mut cycle = 0;
for (j, &(a, b)) in e.iter().enumerate() {
if (i >> j) & 1 == 1 {
sign = -sign;
set.push((a, b));
*deg.entry(a).or_insert(0) += 1;
*deg.entry(b).or_insert(0) += 1;
if u.unite(a, b).is_none() {
cycle += 1;
}
}
}
for _ in 0..set.len() {
u.undo();
}
if deg.iter().any(|p| *p.1 > 2) || cycle > 1 {
continue;
}
if deg.iter().all(|p| *p.1 == 2) {
ans += sign;
continue;
}
if cycle > 0 {
continue;
}
let v = deg.iter().filter(|p| *p.1 == 1).count() / 2;
let used = deg.len();
ans += sign * memo[v][used];
/*
for k in 0.. {
if k + used < 3 {
continue;
}
if used + k > n {
break;
}
ans += sign * pc.fact(v - 1) * ModInt::new(2).pow((v - 1) as u64) * pc.perm(n - used, k) * pc.comb(k + v - 1, v - 1);
}
*/
}
println!("{}", ans);
}
fn main() {
run();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0