結果

問題 No.1209 XOR Into You
ユーザー NatsubiSogan
提出日時 2020-08-31 18:21:04
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 1,475 ms / 2,000 ms
コード長 2,391 bytes
コンパイル時間 337 ms
コンパイル使用メモリ 12,928 KB
実行使用メモリ 119,144 KB
最終ジャッジ日時 2024-11-16 20:07:45
合計ジャッジ時間 56,085 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 37
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

n = int(input())
import math
import numpy as np
import decimal
import collections
import itertools
import sys
def find(x):
if par[x] < 0:
return x
else:
par[x] = find(par[x])
return par[x]
def unite(x, y):
p = find(x)
q = find(y)
if p == q:
return None
if p > q:
p,q = q,p
par[p] += par[q]
par[q] = p
def same(x, y):
return find(x) == find(y)
def size(x):
return -par[find(x)]
par = [-1 for i in range(n)]
def prime_numbers(x):
if x < 2:
return []
prime_numbers = [i for i in range(x)]
prime_numbers[1] = 0
for prime_number in prime_numbers:
if prime_number > math.sqrt(x):
break
if prime_number == 0:
continue
for composite_number in range(2 * prime_number, x, prime_number):
prime_numbers[composite_number] = 0
return [prime_number for prime_number in prime_numbers if prime_number != 0]
def is_prime(x):
if x < 2:
return False
if x == 2 or x == 3 or x == 5:
return True
if x % 2 == 0 or x % 3 == 0 or x % 5 == 0:
return False
prime_number = 7
difference = 4
while prime_number <= math.sqrt(x):
if x % prime_number == 0:
return False
prime_number += difference
difference = 6 - difference
return True
mod = 10 ** 9 + 7
def comb(n, r):
if n < r:return 0
if n < 0 or r < 0:return 0
return fa[n] * fi[r] % mod * fi[n - r] % mod
fa = [1] * (n + 1)
fi = [1] * (n + 1)
for i in range(1, n + 1):
fa[i] = fa[i - 1] * i % mod
fi[i] = pow(fa[i], mod - 2, mod)
BIT = [0] * (n + 1)
def add(i, x):
while i <= n:
BIT[i] += x
i += i & -i
def query(i):
s = 0
while i > 0:
s += BIT[i]
i -= i & -i
return s
a = list(map(int, input().split()))
b = list(map(int, input().split()))
a.append(0)
b.append(0)
if a[0] != b[0] or a[-2] != b[-2]:
print(-1)
else:
a2 = [a[i] ^ a[i + 1] for i in range(n)]
b2 = [b[i] ^ b[i + 1] for i in range(n)]
dic = {i: [] for i in b2}
for i in range(n):
dic[b2[i]].append(i)
ans = 0
for i in range(n - 1, -1, -1):
if not a2[i] in dic or dic[a2[i]] == []:
print(-1)
exit()
ans += query(dic[a2[i]][-1] + 1)
add(dic[a2[i]][-1] + 1, 1)
dic[a2[i]].pop()
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0