結果

問題 No.1241 Eternal Tours
ユーザー SumitacchanSumitacchan
提出日時 2020-09-26 03:10:43
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,165 ms / 6,000 ms
コード長 8,888 bytes
コンパイル時間 1,870 ms
コンパイル使用メモリ 179,440 KB
実行使用メモリ 48,240 KB
最終ジャッジ日時 2024-06-28 12:07:41
合計ジャッジ時間 19,897 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 436 ms
19,712 KB
testcase_03 AC 3 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 2 ms
6,944 KB
testcase_14 AC 438 ms
12,160 KB
testcase_15 AC 2 ms
6,944 KB
testcase_16 AC 105 ms
6,944 KB
testcase_17 AC 1,122 ms
48,236 KB
testcase_18 AC 966 ms
23,160 KB
testcase_19 AC 896 ms
21,284 KB
testcase_20 AC 5 ms
6,944 KB
testcase_21 AC 15 ms
6,944 KB
testcase_22 AC 988 ms
33,904 KB
testcase_23 AC 27 ms
6,944 KB
testcase_24 AC 2 ms
6,940 KB
testcase_25 AC 2 ms
6,940 KB
testcase_26 AC 2 ms
6,940 KB
testcase_27 AC 2 ms
6,940 KB
testcase_28 AC 583 ms
19,584 KB
testcase_29 AC 586 ms
19,712 KB
testcase_30 AC 664 ms
19,584 KB
testcase_31 AC 387 ms
11,392 KB
testcase_32 AC 1,123 ms
48,240 KB
testcase_33 AC 972 ms
25,836 KB
testcase_34 AC 847 ms
19,712 KB
testcase_35 AC 822 ms
19,712 KB
testcase_36 AC 2 ms
6,944 KB
testcase_37 AC 2 ms
6,940 KB
testcase_38 AC 1,165 ms
25,708 KB
testcase_39 AC 1,095 ms
22,648 KB
testcase_40 AC 1,005 ms
19,712 KB
testcase_41 AC 952 ms
48,240 KB
testcase_42 AC 792 ms
22,652 KB
testcase_43 AC 698 ms
19,712 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
//using namespace atcoder;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define FOR(i, begin, end) for(int i=(begin);i<(end);i++)
#define REP(i, n) FOR(i,0,n)
#define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--)
#define IREP(i, n) IFOR(i,0,n)
#define Sort(v) sort(v.begin(), v.end())
#define Reverse(v) reverse(v.begin(), v.end())
#define all(v) v.begin(),v.end()
#define SZ(v) ((int)v.size())
#define Lower_bound(v, x) distance(v.begin(), lower_bound(v.begin(), v.end(), x))
#define Upper_bound(v, x) distance(v.begin(), upper_bound(v.begin(), v.end(), x))
#define chmax(a, b) a = max(a, b)
#define chmin(a, b) a = min(a, b)
#define bit(n) (1LL<<(n))
#define debug(x) cout << #x << "=" << x << endl;
#define vdebug(v) { cout << #v << "=" << endl; REP(i_debug, v.size()){ cout << v[i_debug] << ","; } cout << endl; }
#define mdebug(m) { cout << #m << "=" << endl; REP(i_debug, m.size()){ REP(j_debug, m[i_debug].size()){ cout << m[i_debug][j_debug] << ","; } cout << endl;} }
#define pb push_back
#define fi first
#define se second
#define int long long
#define INF 1000000000000000000
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; }
template<typename T> ostream &operator<<(ostream &os, vector<T> &v){ for(int i = 0; i < v.size(); i++) { cout << v[i]; if(i != v.size() - 1) cout << endl; }; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, pair<T1, T2> p){ cout << '(' << p.first << ',' << p.second << ')'; return os; }
template<typename T> void Out(T x) { cout << x << endl; }
template<typename T1, typename T2> void chOut(bool f, T1 y, T2 n) { if(f) Out(y); else Out(n); }

using vec = vector<int>;
using mat = vector<vec>;
using Pii = pair<int, int>;
using v_bool = vector<bool>;
using v_Pii = vector<Pii>;

//int dx[4] = {1,0,-1,0};
//int dy[4] = {0,1,0,-1};
//char d[4] = {'D','R','U','L'};

//const int mod = 1000000007;
const int mod = 998244353;

template<long long MOD>
struct ModInt{

    using ll = long long;
    ll val;

    void setval(ll v) { val = v % MOD; };
    ModInt(): val(0) {}
    ModInt(ll v) { setval(v); };

    ModInt operator+(const ModInt &x) const { return ModInt(val + x.val); }
    ModInt operator-(const ModInt &x) const { return ModInt(val - x.val + MOD); }
    ModInt operator*(const ModInt &x) const { return ModInt(val * x.val); }
    ModInt operator/(const ModInt &x) const { return *this * x.inv(); }
    ModInt operator-() const { return ModInt(MOD - val); }
    ModInt operator+=(const ModInt &x) { return *this = *this + x; }
    ModInt operator-=(const ModInt &x) { return *this = *this - x; }
    ModInt operator*=(const ModInt &x) { return *this = *this * x; }
    ModInt operator/=(const ModInt &x) { return *this = *this / x; }
    bool operator==(const ModInt &x) const { return (*this).val == x.val; }

    friend ostream& operator<<(ostream &os, const ModInt &x) { os << x.val; return os; }
    friend istream& operator>>(istream &is, ModInt &x) { is >> x.val; x.val = (x.val % MOD + MOD) % MOD; return is; }

    ModInt pow(ll n) const {
        ModInt a = 1;
        if(n == 0) return a;
        int i0 = 64 - __builtin_clzll(n);
        for(int i = i0 - 1; i >= 0; i--){
            a = a * a;
            if((n >> i) & 1) a *= (*this); 
        }
        return a;
    }
    ModInt inv() const { return this->pow(MOD - 2); }
};

using mint = ModInt<mod>; mint pow(mint x, long long n) { return x.pow(n); }
//using mint = double; //for debug
using mvec = vector<mint>;
using mmat = vector<mvec>;

struct Combination{

    vector<mint> fact, invfact;

    Combination(int N){
        fact = vector<mint>({mint(1)});
        invfact = vector<mint>({mint(1)});
        fact_initialize(N);
    }

    void fact_initialize(int N){
        int i0 = fact.size();
        if(i0 >= N + 1) return;
        fact.resize(N + 1);
        invfact.resize(N + 1);
        for(int i = i0; i <= N; i++) fact[i] = fact[i - 1] * i;
        invfact[N] = (mint)1 / fact[N];
        for(int i = N - 1; i >= i0; i--) invfact[i] = invfact[i + 1] * (i + 1); 
    }

    mint nCr(int n, int r){
        if(n < 0 || r < 0 || r > n) return mint(0);
        if(fact.size() < n + 1) fact_initialize(n);
        return fact[n] * invfact[r] * invfact[n - r];
    }

    mint nPr(int n, int r){
        if(n < 0 || r < 0 || r > n) return mint(0);
        if(fact.size() < n + 1) fact_initialize(n);
        return fact[n] * invfact[n - r];
    }

    mint Catalan(int n){
        if(n < 0) return 0;
        else if(n == 0) return 1;
        if(fact.size() < 2 * n + 1) fact_initialize(2 * n);
        return fact[2 * n] * invfact[n + 1] * invfact[n];
    }

};

template<long long MOD>
class NTT
{
private:
    vector<ModInt<MOD>> f, f_tmp;

    void init(){
        n = 31 - __builtin_clz((signed)N);
        assert(N == (1 << n));

        assert((e.pow(N)).val == 1);
        pow_e.resize(N + 1);
        pow_e[0] = 1;
        bool e_valid = true;
        FOR(i, 1, N){
            pow_e[i] = pow_e[i - 1] * e;
            if(pow_e[i].val == 1) e_valid = false;
        }
        pow_e[N] = 1;
        assert(e_valid);

        inv_N = ((ModInt<MOD>)N).inv();

        f.resize(N);
        f_tmp.resize(N);
    }

    void forward_exec(int l, int r, int t){
        if(t == n) return;
        int sz = (r - l) >> 1;
        REP(i, sz){
            f_tmp[l + i] = f[l + 2 * i];
            f_tmp[l + sz + i] = f[l + 2 * i + 1];
        }
        FOR(i, l, r) f[i] = f_tmp[i];
        forward_exec(l, l + sz, t + 1);
        forward_exec(l + sz, r, t + 1);

        REP(i, sz) f_tmp[l + i] = f[l + i] + f[l + sz + i] * pow_e[i << t];
        REP(i, sz) f_tmp[l + sz + i] = f[l + i] + f[l + sz + i] * pow_e[(sz + i) << t];
        FOR(i, l, r) f[i] = f_tmp[i];
    }

    void inverse_exec(int l, int r, int t){
        if(t == n) return;
        int sz = (r - l) / 2;
        REP(i, sz){
            f_tmp[l + i] = f[l + 2 * i];
            f_tmp[l + sz + i] = f[l + 2 * i + 1];
        }
        FOR(i, l, r) f[i] = f_tmp[i];
        inverse_exec(l, l + sz, t + 1);
        inverse_exec(l + sz, r, t + 1);

        REP(i, sz) f_tmp[l + i] = f[l + i] + f[l + sz + i] * pow_e[N - (i << t)];
        REP(i, sz) f_tmp[l + sz + i] = f[l + i] + f[l + sz + i] * pow_e[N - ((sz + i) << t)];
        FOR(i, l, r) f[i] = f_tmp[i];
    }

public:

    int N, n;
    ModInt<MOD> e, inv_N;
    vector<ModInt<MOD>> pow_e;

    //array size M is converted to N = 2^n (>=M)
    //only for MOD = 924844033, 998244353, 1012924417
    NTT(int M){
        N = 1;
        while(M > N) N <<= 1;

        ModInt<MOD> x;
        if(MOD == 924844033) x = 5;
        else if(MOD == 998244353) x = 3;
        else if(MOD == 1012924417) x = 5;
        
        assert((MOD - 1) % N == 0);
        e = x.pow((MOD - 1) / N);

        init();
    }

    //N=2^n, e^N=1, e^k!=1 (k<N) must be satisfied
    NTT(int N, ModInt<MOD> e): N(N), e(e){
        init();
    }

    void exec(vector<ModInt<MOD>> &F, bool inverse = false){
        assert(F.size() == N);
        f.swap(F);
        if(!inverse) forward_exec(0, N, 0);
        else inverse_exec(0, N, 0);
        F.swap(f);
        if(inverse){
            REP(i, N) F[i] *= inv_N;
        }
    }

    //if resize_result is true, the array size of the result becomes A.size() + B.size() - 1
    //array size must be equal to N if negetive indices are included
    vector<ModInt<MOD>> convolution(vector<ModInt<MOD>> A, vector<ModInt<MOD>> B, bool resize_result = false){
        int sA = A.size(), sB = B.size();
        assert(sA <= N && sB <= N);
        A.resize(N);
        B.resize(N);   
        exec(A);
        exec(B);

        vector<ModInt<MOD>> C(N);
        REP(i, N) C[i] = A[i] * B[i];
        exec(C, true);

        if(resize_result) C.resize(sA + sB - 1);

        return C;
    }
};

void ntt2d(mmat &F, bool inverse = false){
    int n = F.size(), m = F[0].size();
    NTT<mod> ntt1(m), ntt2(n);
    REP(i, n) ntt1.exec(F[i], inverse);
    REP(j, m){
        mvec tmp(n);
        REP(i, n) tmp[i] = F[i][j];
        ntt2.exec(tmp, inverse);
        REP(i, n) F[i][j] = tmp[i];
    }
}

signed main(){

    int X, Y, T, a, b, c, d; cin >> X >> Y >> T >> a >> b >> c >> d;
    a--; b--; c--; d--;

    mmat A(bit(X + 1), mvec(bit(Y + 1))), F(bit(X + 1), mvec(bit(Y + 1)));
    A[a][b] = 1;
    A[bit(X + 1) - 2 - a][b] = mod - 1;
    A[a][bit(Y + 1) - 2 - b] = mod - 1;
    A[bit(X + 1) - 2 - a][bit(Y + 1) - 2 - b] = 1;
    FOR(i, -1, 2) FOR(j, -1, 2) if(abs(i) + abs(j) <= 1) F[(i + bit(X + 1)) % bit(X + 1)][(j + bit(Y + 1)) % bit(Y + 1)] = 1;

    ntt2d(A);
    ntt2d(F);
    REP(i, bit(X + 1)) REP(j, bit(Y + 1)) A[i][j] *= F[i][j].pow(T);
    ntt2d(A, true);
    Out(A[c][d]);

    return 0;
}
0