結果

問題 No.1293 2種類の道路
ユーザー torisasami4torisasami4
提出日時 2020-11-20 22:05:42
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 170 ms / 2,000 ms
コード長 7,232 bytes
コンパイル時間 2,351 ms
コンパイル使用メモリ 198,660 KB
実行使用メモリ 52,124 KB
最終ジャッジ日時 2024-07-23 13:04:24
合計ジャッジ時間 5,649 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 12 ms
34,484 KB
testcase_01 AC 12 ms
34,560 KB
testcase_02 AC 12 ms
34,560 KB
testcase_03 AC 11 ms
34,560 KB
testcase_04 AC 12 ms
34,560 KB
testcase_05 AC 12 ms
34,560 KB
testcase_06 AC 13 ms
34,560 KB
testcase_07 AC 12 ms
34,432 KB
testcase_08 AC 11 ms
34,560 KB
testcase_09 AC 153 ms
41,472 KB
testcase_10 AC 153 ms
41,472 KB
testcase_11 AC 151 ms
41,492 KB
testcase_12 AC 153 ms
41,476 KB
testcase_13 AC 152 ms
41,340 KB
testcase_14 AC 157 ms
52,116 KB
testcase_15 AC 156 ms
52,124 KB
testcase_16 AC 148 ms
44,112 KB
testcase_17 AC 170 ms
46,616 KB
testcase_18 AC 128 ms
46,768 KB
testcase_19 AC 90 ms
39,720 KB
testcase_20 AC 89 ms
39,852 KB
testcase_21 AC 98 ms
36,168 KB
testcase_22 AC 99 ms
36,348 KB
testcase_23 AC 97 ms
36,096 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(x) push_back(x)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep2(i, n) for (ll i = n - 1; i >= 0; i--)
template <class T>
using rque = priority_queue<T, vector<T>, greater<T>>;
const ll mod = 1e9+7;

ll gcd(ll a, ll b)
{
	ll c = a % b;
	while (c != 0)
	{
		a = b;
		b = c;
		c = a % b;
	}
	return b;
}

long long extGCD(long long a, long long b, long long &x, long long &y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	long long d = extGCD(b, a % b, y, x);
	y -= a / b * x;
	return d;
}

struct UnionFind
{
	vector<ll> data;

	UnionFind(int sz)
	{
		data.assign(sz, -1);
	}

	bool unite(int x, int y)
	{
		x = find(x), y = find(y);
		if (x == y)
			return (false);
		if (data[x] > data[y])
			swap(x, y);
		data[x] += data[y];
		data[y] = x;
		return (true);
	}

	int find(int k)
	{
		if (data[k] < 0)
			return (k);
		return (data[k] = find(data[k]));
	}

	ll size(int k)
	{
		return (-data[find(k)]);
	}
};

ll M = 1000000007;

vector<ll> fac(2000011);  //n!(mod M)
vector<ll> ifac(2000011); //k!^{M-2} (mod M)

ll mpow(ll x, ll n)
{
	ll ans = 1;
	while (n != 0)
	{
		if (n & 1)
			ans = ans * x % M;
		x = x * x % M;
		n = n >> 1;
	}
	return ans;
}
ll mpow2(ll x, ll n, ll mod)
{
	ll ans = 1;
	while (n != 0)
	{
		if (n & 1)
			ans = ans * x % mod;
		x = x * x % mod;
		n = n >> 1;
	}
	return ans;
}
void setcomb()
{
	fac[0] = 1;
	ifac[0] = 1;
	for (ll i = 0; i < 2000010; i++)
	{
		fac[i + 1] = fac[i] * (i + 1) % M; // n!(mod M)
	}
	ifac[2000010] = mpow(fac[2000010], M - 2);
	for (ll i = 2000010; i > 0; i--)
	{
		ifac[i - 1] = ifac[i] * i % M;
	}
}
ll comb(ll a, ll b)
{
	if (a == 0 && b == 0)
		return 1;
	if (a < b || a < 0)
		return 0;
	ll tmp = ifac[a - b] * ifac[b] % M;
	return tmp * fac[a] % M;
}
ll perm(ll a, ll b)
{
	if (a == 0 && b == 0)
		return 1;
	if (a < b || a < 0)
		return 0;
	return fac[a] * ifac[a - b] % M;
}
long long modinv(long long a)
{
	long long b = M, u = 1, v = 0;
	while (b)
	{
		long long t = a / b;
		a -= t * b;
		swap(a, b);
		u -= t * v;
		swap(u, v);
	}
	u %= M;
	if (u < 0)
		u += M;
	return u;
}
ll modinv2(ll a, ll mod)
{
	ll b = mod, u = 1, v = 0;
	while (b)
	{
		ll t = a / b;
		a -= t * b;
		swap(a, b);
		u -= t * v;
		swap(u, v);
	}
	u %= mod;
	if (u < 0)
		u += mod;
	return u;
}

template <int mod>
struct ModInt
{
	int x;

	ModInt() : x(0) {}

	ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

	ModInt &operator+=(const ModInt &p)
	{
		if ((x += p.x) >= mod)
			x -= mod;
		return *this;
	}

	ModInt &operator-=(const ModInt &p)
	{
		if ((x += mod - p.x) >= mod)
			x -= mod;
		return *this;
	}

	ModInt &operator*=(const ModInt &p)
	{
		x = (int)(1LL * x * p.x % mod);
		return *this;
	}

	ModInt &operator/=(const ModInt &p)
	{
		*this *= p.inverse();
		return *this;
	}

	ModInt operator-() const { return ModInt(-x); }

	ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

	ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

	ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

	ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

	bool operator==(const ModInt &p) const { return x == p.x; }

	bool operator!=(const ModInt &p) const { return x != p.x; }

	ModInt inverse() const
	{
		int a = x, b = mod, u = 1, v = 0, t;
		while (b > 0)
		{
			t = a / b;
			swap(a -= t * b, b);
			swap(u -= t * v, v);
		}
		return ModInt(u);
	}

	ModInt pow(int64_t n) const
	{
		ModInt ret(1), mul(x);
		while (n > 0)
		{
			if (n & 1)
				ret *= mul;
			mul *= mul;
			n >>= 1;
		}
		return ret;
	}

	friend ostream &operator<<(ostream &os, const ModInt &p)
	{
		return os << p.x;
	}

	friend istream &operator>>(istream &is, ModInt &a)
	{
		int64_t t;
		is >> t;
		a = ModInt<mod>(t);
		return (is);
	}

	static int get_mod() { return mod; }
};

using mint = ModInt<mod>;

typedef vector<vector<mint>> Matrix;

Matrix mul(Matrix a, Matrix b)
{
	int i, j, k;
	mint t;
	int n = a.size(), m = b[0].size(), l = a[0].size();
	Matrix c(n, vector<mint>(m));
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < m; j++)
		{
			t = 0;
			for (k = 0; k < l; k++)
				t += a[i][k] * b[k][j];
			c[i][j] = t;
		}
	}
	return c;
}

Matrix mat_pow(Matrix x, ll n)
{
	ll k = x.size();
	Matrix ans(k, vector<mint>(k, 0));
	for (int i = 0; i < k; i++)
		ans[i][i] = 1;
	while (n != 0)
	{
		if (n & 1)
			ans = mul(ans, x);
		x = mul(x, x);
		n = n >> 1;
	}
	return ans;
}

struct UnionFindUndo {
  vector< int > data;
  stack< pair< int, int > > history;

  UnionFindUndo(int sz) {
    data.assign(sz, -1);
  }

  bool unite(int x, int y) {
    x = find(x), y = find(y);
    history.emplace(x, data[x]);
    history.emplace(y, data[y]);
    if(x == y) return (false);
    if(data[x] > data[y]) swap(x, y);
    data[x] += data[y];
    data[y] = x;
    return (true);
  }

  int find(int k) {
    if(data[k] < 0) return (k);
    return (find(data[k]));
  }

  int size(int k) {
    return (-data[find(k)]);
  }

  void undo() {
    data[history.top().first] = history.top().second;
    history.pop();
    data[history.top().first] = history.top().second;
    history.pop();
  }

  void snapshot() {
    while(history.size()) history.pop();
  }

  void rollback() {
    while(history.size()) undo();
  }
};

using UnWeightedGraph = vector<vector<int>>;
template< typename G >
struct StronglyConnectedComponents {
  const G &g;
  UnWeightedGraph gg, rg;
  vector< int > comp, order, used;

  StronglyConnectedComponents(G &g) : g(g), gg(g.size()), rg(g.size()), comp(g.size(), -1), used(g.size()) {
    for(int i = 0; i < g.size(); i++) {
      for(auto e : g[i]) {
        gg[i].emplace_back((int) e);
        rg[(int) e].emplace_back(i);
      }
    }
  }

  int operator[](int k) {
    return comp[k];
  }

  void dfs(int idx) {
    if(used[idx]) return;
    used[idx] = true;
    for(int to : gg[idx]) dfs(to);
    order.push_back(idx);
  }

  void rdfs(int idx, int cnt) {
    if(comp[idx] != -1) return;
    comp[idx] = cnt;
    for(int to : rg[idx]) rdfs(to, cnt);
  }

  void build(UnWeightedGraph &t) {
    for(int i = 0; i < gg.size(); i++) dfs(i);
    reverse(begin(order), end(order));
    int ptr = 0;
    for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;

    t.resize(ptr);
    for(int i = 0; i < g.size(); i++) {
      for(auto &to : g[i]) {
        int x = comp[i], y = comp[to];
        if(x == y) continue;
        t[x].push_back(y);
      }
    }
  }
};

int main()
{
	int n, d, w;
	cin >> n >> d >> w;
	UnionFindUndo uf(n);
	int a, b;
	rep(i, d) cin >> a >> b, uf.unite(--a, --b);
	UnionFind uf2(n);
	map<int, int> m, rm;
	rep(i, w) cin >> a >> b, uf2.unite(--a, --b);
	int p = 0;
	rep(i, n) if (uf2.find(i) == i) m[p] = i, rm[i] = p, p++;
	vector<int> v[m.size()];
	rep(i, n) v[rm[uf2.find(i)]].pb(i);
	ll ans = 0;
	rep(i, m.size()){
		rep(j, v[i].size() - 1) uf.unite(v[i][j], v[i][j + 1]);
		ans += (uf.size(v[i][0]) - 1) * uf2.size(v[i][0]);
		rep(j, v[i].size() - 1) uf.undo();
	}
	cout << ans << endl;
}
0