結果
| 問題 |
No.1300 Sum of Inversions
|
| コンテスト | |
| ユーザー |
ccppjsrb
|
| 提出日時 | 2020-11-27 22:14:36 |
| 言語 | Go (1.23.4) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,063 bytes |
| コンパイル時間 | 14,708 ms |
| コンパイル使用メモリ | 223,488 KB |
| 実行使用メモリ | 19,996 KB |
| 最終ジャッジ日時 | 2024-07-26 13:11:09 |
| 合計ジャッジ時間 | 18,034 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 33 WA * 1 |
ソースコード
package main
import (
"bufio"
"fmt"
"os"
"sort"
"strconv"
)
func getNextString(scanner *bufio.Scanner) string {
if !scanner.Scan() {
panic("scan failed")
}
return scanner.Text()
}
func atoi(s string) int { x, _ := strconv.Atoi(s); return x }
func getNextInt(scanner *bufio.Scanner) int { return atoi(getNextString(scanner)) }
func atoi64(s string) int64 { x, _ := strconv.ParseInt(s, 10, 64); return x }
func getNextInt64(scanner *bufio.Scanner) int64 { return atoi64(getNextString(scanner)) }
func atof64(s string) float64 { x, _ := strconv.ParseFloat(s, 64); return x }
func getNextFloat64(scanner *bufio.Scanner) float64 { return atof64(getNextString(scanner)) }
func main() {
fp := os.Stdin
wfp := os.Stdout
extra := 0
if os.Getenv("I") == "IronMan" {
fp, _ = os.Open(os.Getenv("END_GAME"))
extra = 100
}
scanner := bufio.NewScanner(fp)
scanner.Split(bufio.ScanWords)
scanner.Buffer(make([]byte, 1000005), 1000005)
writer := bufio.NewWriter(wfp)
defer func() {
r := recover()
if r != nil {
fmt.Fprintln(writer, r)
}
writer.Flush()
}()
solve(scanner, writer)
for i := 0; i < extra; i++ {
fmt.Fprintln(writer, "-----------------------------------")
solve(scanner, writer)
}
}
func solve(scanner *bufio.Scanner, writer *bufio.Writer) {
SetMod(Mod998244353)
n := getNextInt(scanner)
type pair [2]int
aa := make([]pair, n)
for i := 0; i < n; i++ {
aa[i][0] = i
aa[i][1] = getNextInt(scanner)
}
sort.Slice(aa, func(i, j int) bool {
return aa[i][1] < aa[j][1]
})
cnt := NewFenwickTree(n)
sum := NewFenwickTree(n)
lcnt := make([]Mint, n)
rcnt := make([]Mint, n)
lsum := make([]Mint, n)
rsum := make([]Mint, n)
l := 0
for i := 0; i < n; i++ {
for aa[l][1] < aa[i][1] {
cnt.Add(aa[l][0], 1)
sum.Add(aa[l][0], int64(aa[l][1]))
l++
}
rcnt[aa[i][0]] = Mint(cnt.Sum(aa[i][0]+1, n))
rsum[aa[i][0]] = Mint(sum.Sum(aa[i][0]+1, n))
}
sort.Slice(aa, func(i, j int) bool {
return aa[i][1] > aa[j][1]
})
cnt = NewFenwickTree(n)
sum = NewFenwickTree(n)
l = 0
for i := 0; i < n; i++ {
for aa[l][1] > aa[i][1] {
cnt.Add(aa[l][0], 1)
sum.Add(aa[l][0], int64(aa[l][1]))
l++
}
lcnt[aa[i][0]] = Mint(cnt.Sum(0, aa[i][0]))
lsum[aa[i][0]] = Mint(sum.Sum(0, aa[i][0]))
}
var ans Mint
for i := 0; i < n; i++ {
ans.AddAs(lcnt[aa[i][0]].Mul(rsum[aa[i][0]]))
ans.AddAs(rcnt[aa[i][0]].Mul(lsum[aa[i][0]]))
ans.AddAs(rcnt[aa[i][0]].Mul(lcnt[aa[i][0]]).Mul(Mint(aa[i][1])))
}
fmt.Fprintln(writer, ans)
}
// Mod constants.
const (
Mod1000000007 = 1000000007
Mod998244353 = 998244353
)
var (
mod Mint
fmod func(Mint) Mint
)
// Mint treats the modular arithmetic
type Mint int64
// SetMod sets the mod. It must be called first.
func SetMod(newmod Mint) {
switch newmod {
case Mod1000000007:
fmod = staticMod1000000007
case Mod998244353:
fmod = staticMod998244353
default:
mod = newmod
fmod = dynamicMod
}
}
func dynamicMod(m Mint) Mint {
m %= mod
if m < 0 {
return m + mod
}
return m
}
func staticMod1000000007(m Mint) Mint {
m %= Mod1000000007
if m < 0 {
return m + Mod1000000007
}
return m
}
func staticMod998244353(m Mint) Mint {
m %= Mod998244353
if m < 0 {
return m + Mod998244353
}
return m
}
// Mod returns m % mod.
func (m Mint) Mod() Mint {
return fmod(m)
}
// Inv returns modular multiplicative inverse
func (m Mint) Inv() Mint {
return m.Pow(Mint(0).Sub(2))
}
// Pow returns m^n
func (m Mint) Pow(n Mint) Mint {
p := Mint(1)
for n > 0 {
if n&1 == 1 {
p.MulAs(m)
}
m.MulAs(m)
n >>= 1
}
return p
}
// Add returns m+x
func (m Mint) Add(x Mint) Mint {
return (m + x).Mod()
}
// Sub returns m-x
func (m Mint) Sub(x Mint) Mint {
return (m - x).Mod()
}
// Mul returns m*x
func (m Mint) Mul(x Mint) Mint {
return (m * x).Mod()
}
// Div returns m/x
func (m Mint) Div(x Mint) Mint {
return m.Mul(x.Inv())
}
// AddAs assigns *m + x to *m and returns m
func (m *Mint) AddAs(x Mint) *Mint {
*m = m.Add(x)
return m
}
// SubAs assigns *m - x to *m and returns m
func (m *Mint) SubAs(x Mint) *Mint {
*m = m.Sub(x)
return m
}
// MulAs assigns *m * x to *m and returns m
func (m *Mint) MulAs(x Mint) *Mint {
*m = m.Mul(x)
return m
}
// DivAs assigns *m / x to *m and returns m
func (m *Mint) DivAs(x Mint) *Mint {
*m = m.Div(x)
return m
}
// FenwickTree Data structure that can efficiently update elements and calculate prefix sums in a table of numbers.
type FenwickTree struct {
n int
data []int64
}
// NewFenwickTree Constructor
func NewFenwickTree(n int) *FenwickTree {
data := make([]int64, n+1)
return &FenwickTree{n: n, data: data}
}
// Add processes a[p] += x.
func (f *FenwickTree) Add(p int, x int64) {
for p++; p <= f.n; p += p & -p {
f.data[p] += x
}
}
// Sum returns a[l] + a[l - 1] + ... + a[r - 1].
func (f *FenwickTree) Sum(l, r int) int64 {
return f.sum(r) - f.sum(l)
}
func (f *FenwickTree) sum(r int) int64 {
s := int64(0)
for ; r > 0; r -= r & -r {
s += f.data[r]
}
return s
}
ccppjsrb