結果
| 問題 |
No.1307 Rotate and Accumulate
|
| コンテスト | |
| ユーザー |
momohara
|
| 提出日時 | 2020-12-04 00:21:28 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 83 ms / 5,000 ms |
| コード長 | 4,863 bytes |
| コンパイル時間 | 2,770 ms |
| コンパイル使用メモリ | 203,204 KB |
| 最終ジャッジ日時 | 2025-01-16 14:58:35 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 19 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define all(hoge) (hoge).begin(), (hoge).end()
#define en '\n'
using ll = long long;
using ull = unsigned long long;
#define rep(i, m, n) for(ll i = (ll)(m); i < (ll)(n); ++i)
#define rep2(i, m, n) for(ll i = (ll)(n)-1; i >= (ll)(m); --i)
#define REP(i, n) rep(i, 0, n)
#define REP2(i, n) rep2(i, 0, n)
template<class T> using vec = vector<T>;
template<class T> using vvec = vector<vec<T>>;
typedef pair<ll, ll> P;
using tp = tuple<ll, ll, ll>;
constexpr long long INF = 1LL << 60;
constexpr int INF_INT = 1 << 25;
//constexpr long long MOD = (ll) 1e9 + 7;
constexpr long long MOD = 998244353LL;
using ld = long double;
static const ld pi = 3.141592653589793L;
using Array = vector<ll>;
using Matrix = vector<Array>;
/*
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
*/
template<class T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <int mod>
struct NumberTheoreticTransform {
vector<int> rev, rts;
int base, max_base, root;
NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0)
tmp >>= 1, max_base++;
root = 2;
while(mod_pow(root, (mod - 1) >> 1) == 1)
++root;
assert(mod_pow(root, mod - 1) == 1);
root = mod_pow(root, (mod - 1) >> max_base);
}
inline int mod_pow(int x, int n) {
int ret = 1;
while(n > 0) {
if(n & 1)
ret = mul(ret, x);
x = mul(x, x);
n >>= 1;
}
return ret;
}
inline int inverse(int x) {
return mod_pow(x, mod - 2);
}
inline unsigned add(unsigned x, unsigned y) {
x += y;
if(x >= mod)
x -= mod;
return x;
}
inline unsigned mul(unsigned a, unsigned b) {
return 1ull * a * b % (unsigned long long)mod;
}
void ensure_base(int nbase) {
if(nbase <= base)
return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
assert(nbase <= max_base);
while(base < nbase) {
int z = mod_pow(root, 1 << (max_base - 1 - base));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
rts[(i << 1) + 1] = mul(rts[i], z);
}
++base;
}
}
void ntt(vector<int> &a) {
const int n = (int)a.size();
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
int z = mul(a[i + j + k], rts[j + k]);
a[i + j + k] = add(a[i + j], mod - z);
a[i + j] = add(a[i + j], z);
}
}
}
}
vector<int> multiply(vector<int> a, vector<int> b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need)
nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
int inv_sz = inverse(sz);
for(int i = 0; i < sz; i++) {
a[i] = mul(a[i], mul(b[i], inv_sz));
}
reverse(a.begin() + 1, a.end());
ntt(a);
a.resize(need);
return a;
}
vector<int> pow(vector<int> a, int k) {
if(k <= 1)
return a;
if(k & 1)
return multiply(a, pow(a, k - 1));
else
return pow(multiply(a, a), k / 2);
}
};
NumberTheoreticTransform<MOD> ntt;
void solve() {
int n,q;
cin>>n>>q;
vec<int> a(n);
REP(i,n){
cin>>a[i];
}
vec<int> R(n,0);
REP(i,q){
ll r;
cin>>r;
r = (n-r)%n;
R[r]++;
}
auto ret = ntt.multiply(a,R);
vec<int> ans(n);
REP(i,ret.size()){
ans[i%n]+=ret[i];
}
for(auto i:ans)cout<<i<<" ";
cout<<en;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
/*
ll t;
cin >> t;
REP(i, t - 1) {
solve();
}*/
solve();
return 0;
}
momohara