結果

問題 No.1341 真ん中を入れ替えて門松列
ユーザー tatyamtatyam
提出日時 2021-01-16 03:48:52
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 3,912 bytes
コンパイル時間 2,519 ms
コンパイル使用メモリ 224,356 KB
実行使用メモリ 13,184 KB
最終ジャッジ日時 2024-11-26 22:13:43
合計ジャッジ時間 35,429 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,496 KB
testcase_01 AC 2 ms
10,496 KB
testcase_02 AC 2 ms
10,496 KB
testcase_03 AC 1 ms
11,520 KB
testcase_04 AC 2 ms
10,496 KB
testcase_05 AC 2 ms
11,648 KB
testcase_06 AC 25 ms
10,496 KB
testcase_07 TLE -
testcase_08 AC 6 ms
11,136 KB
testcase_09 TLE -
testcase_10 TLE -
testcase_11 TLE -
testcase_12 TLE -
testcase_13 TLE -
testcase_14 TLE -
testcase_15 TLE -
testcase_16 TLE -
testcase_17 TLE -
testcase_18 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;


template< typename flow_t, typename cost_t >
struct PrimalDual {
  const cost_t INF;

  struct edge {
    int to;
    flow_t cap;
    cost_t cost;
    int rev;
    bool isrev;
  };
  vector< vector< edge > > graph;
  vector< cost_t > potential, min_cost;
  vector< int > prevv, preve;

  PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {}

  void add_edge(int from, int to, flow_t cap, cost_t cost) {
    graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false});
    graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true});
  }

  cost_t min_cost_flow(int s, int t, flow_t f) {
    int V = (int) graph.size();
    cost_t ret = 0;
    using Pi = pair< cost_t, int >;
    priority_queue< Pi, vector< Pi >, greater< Pi > > que;
    potential.assign(V, 0);
    preve.assign(V, -1);
    prevv.assign(V, -1);

    while(f > 0) {
      min_cost.assign(V, INF);
      que.emplace(0, s);
      min_cost[s] = 0;
      while(!que.empty()) {
        Pi p = que.top();
        que.pop();
        if(min_cost[p.second] < p.first) continue;
        for(int i = 0; i < graph[p.second].size(); i++) {
          edge &e = graph[p.second][i];
          cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
          if(e.cap > 0 && min_cost[e.to] > nextCost) {
            min_cost[e.to] = nextCost;
            prevv[e.to] = p.second, preve[e.to] = i;
            que.emplace(min_cost[e.to], e.to);
          }
        }
      }
      if(min_cost[t] == INF) return -1;
      for(int v = 0; v < V; v++) potential[v] += min_cost[v];
      flow_t addflow = f;
      for(int v = t; v != s; v = prevv[v]) {
        addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
      }
      f -= addflow;
      ret += addflow * potential[t];
      for(int v = t; v != s; v = prevv[v]) {
        edge &e = graph[prevv[v]][preve[v]];
        e.cap -= addflow;
        graph[v][e.rev].cap += addflow;
      }
    }
    return ret;
  }

  void output() {
    for(int i = 0; i < graph.size(); i++) {
      for(auto &e : graph[i]) {
        if(e.isrev) continue;
        auto &rev_e = graph[e.to][e.rev];
        cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
      }
    }
  }
};

using ll = int64_t;
int main(){
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    ll N, M;
    cin >> N >> M;
    vector<ll> A(N), B(N), C(N);
    for(ll i = 0; i < N; i++){
        cin >> A[i] >> B[i] >> C[i];
        if(A[i] > C[i]) swap(A[i], C[i]);
    }
    PrimalDual<ll, ll> g(N * 4 + 2);
    const ll S = N * 4, T = S + 1;
    for(ll i = 0; i < N; i++) g.add_edge(S, i, 1, 0);
    vector<ll> index(N);
    iota(index.begin(), index.end(), 0);
    sort(index.begin(), index.end(), [&](ll x, ll y){ return A[x] < A[y]; });
    for(ll i = 0; i < N; i++){
        auto p = partition_point(index.begin(), index.end(), [&](ll j){ return A[j] <= B[i]; });
        if(p == index.end()) continue;
        g.add_edge(i, *p + N, 1, 0);
    }
    for(ll i = 0; i + 1 < N; i++) g.add_edge(index[i] + N, index[i + 1] + N, N, 0);
    for(ll i = 0; i < N; i++) g.add_edge(i + N, i + N * 3, 1, -C[i]);
    sort(index.begin(), index.end(), [&](ll x, ll y){ return C[x] > C[y]; });
    for(ll i = 0; i < N; i++){
        auto p = partition_point(index.begin(), index.end(), [&](ll j){ return C[j] >= B[i]; });
        if(p == index.end()) continue;
        g.add_edge(i, *p + N * 2, 1, -B[i]);
    }
    for(ll i = 0; i + 1 < N; i++) g.add_edge(index[i] + N * 2, index[i + 1] + N * 2, N, 0);
    for(ll i = 0; i < N; i++) g.add_edge(i + N * 2, i + N * 3, 1, 0);
    for(ll i = 0; i < N; i++) g.add_edge(i + N * 3, T, 1, 0);
    ll ans = g.min_cost_flow(S, T, N);
    if(ans == -1) return puts("NO") & 0;
    puts("YES");
    puts(-ans >= M ? "KADOMATSU!" : "NO");
}
0