結果

問題 No.1340 おーじ君をさがせ
ユーザー 🍮かんプリン
提出日時 2021-01-16 17:50:49
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 313 ms / 2,000 ms
コード長 4,438 bytes
コンパイル時間 1,783 ms
コンパイル使用メモリ 173,864 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-27 23:34:03
合計ジャッジ時間 7,380 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 59
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/**
* @FileName a.cpp
* @Author kanpurin
* @Created 2021.01.16 17:50:34
**/
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
template< class T >
struct Matrix {
std::vector< std::vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, std::vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, std::vector< T >(n, 0)) {};
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const std::vector< T > &operator[](int k) const {
return (A.at(k));
}
inline std::vector< T > &operator[](int k) {
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
std::vector< std::vector< T > > C(n, std::vector< T >(m, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
bool operator==(const Matrix &B) const {
assert(this->A.size() == B.A.size() && this->A[0].size() == B.A[0].size());
int n = this->A.size();
int m = this->A[0].size();
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
if (this->A[i][j] != B.A[i][j]) return false;
return true;
}
bool operator!=(const Matrix &B) const {
return !(*this == B);
}
friend std::ostream &operator<<(std::ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
os << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++) {
int idx = -1;
for (int j = i; j < width(); j++) {
if (B[j][i] != 0) idx = j;
}
if (idx == -1) return (0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for (int j = i + 1; j < width(); j++) {
T a = B[j][i];
for (int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
Matrix pow(ll k) const {
auto res = I(A.size());
auto M = *this;
while (k > 0) {
if (k & 1) {
res *= M;
}
M *= M;
k >>= 1;
}
return res;
}
};
struct A {
int x;
A(int x):x(x){}
A operator*(const A &b) const {
return A(this->x*b.x);
}
A operator+(const A &b) const {
return A(min(1,this->x+b.x));
}
};
int main() {
ll n,m,t;cin >> n >> m >> t;
Matrix<A> mat(n);
for (int i = 0; i < m; i++) {
int a,b;cin >> a >> b;
mat[a][b] = 1;
}
int ans = 0;
mat = mat.pow(t);
for (int i = 0; i < n; i++) {
ans += mat[0][i].x;
}
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0