結果
| 問題 |
No.1356 Split Tile2
|
| コンテスト | |
| ユーザー |
りあん
|
| 提出日時 | 2021-01-17 14:50:37 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 38 ms / 2,000 ms |
| コード長 | 7,841 bytes |
| コンパイル時間 | 2,387 ms |
| コンパイル使用メモリ | 206,080 KB |
| 最終ジャッジ日時 | 2025-01-18 00:58:50 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 31 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#ifdef __linux__
#define getchar getchar_unlocked
#define putchar putchar_unlocked
#endif
template <class Z> Z getint() {
char c = getchar();
bool neg = c == '-';
Z res = neg ? 0 : c - '0';
while (isdigit(c = getchar())) res = res * 10 + (c - '0');
return neg ? -res : res;
}
template <class Z> void putint(Z a, char c = '\n') {
if (a < 0) putchar('-'), a = -a;
int d[40], i = 0;
do d[i++] = a % 10; while (a /= 10);
while (i--) putchar('0' + d[i]);
putchar(c);
}
template <class T> vector<T> operator-(vector<T> a) {
for (auto&& e : a) e = -e;
return a;
}
template <class T> vector<T>& operator+=(vector<T>& l, const vector<T>& r) {
l.resize(max(l.size(), r.size()));
for (int i = 0; i < (int)r.size(); ++i) l[i] += r[i];
return l;
}
template <class T> vector<T> operator+(vector<T> l, const vector<T>& r) {
return l += r;
}
template <class T> vector<T>& operator-=(vector<T>& l, const vector<T>& r) {
l.resize(max(l.size(), r.size()));
for (int i = 0; i < (int)r.size(); ++i) l[i] -= r[i];
return l;
}
template <class T> vector<T> operator-(vector<T> l, const vector<T>& r) {
return l -= r;
}
template <class T> vector<T>& operator<<=(vector<T>& a, size_t n) {
return a.insert(begin(a), n, 0), a;
}
template <class T> vector<T> operator<<(vector<T> a, size_t n) {
return a <<= n;
}
template <class T> vector<T>& operator>>=(vector<T>& a, size_t n) {
return a.erase(begin(a), begin(a) + min(a.size(), n)), a;
}
template <class T> vector<T> operator>>(vector<T> a, size_t n) {
return a >>= n;
}
template <class T> vector<T> operator*(const vector<T>& l, const vector<T>& r) {
if (l.empty() or r.empty()) return {};
vector<T> res(l.size() + r.size() - 1);
for (int i = 0; i < (int)l.size(); ++i)
for (int j = 0; j < (int)r.size(); ++j) res[i + j] += l[i] * r[j];
return res;
}
template <class T> vector<T>& operator*=(vector<T>& l, const vector<T>& r) {
return l = l * r;
}
template <class T> vector<T> inverse(const vector<T>& a) {
assert(not a.empty() and not (a[0] == 0));
vector<T> b{1 / a[0]};
while (b.size() < a.size()) {
vector<T> x(begin(a), begin(a) + min(a.size(), 2 * b.size()));
x *= b * b;
b.resize(2 * b.size());
for (auto i = b.size() / 2; i < min(x.size(), b.size()); ++i) b[i] = -x[i];
}
return {begin(b), begin(b) + a.size()};
}
template <class T> vector<T> operator/(vector<T> l, vector<T> r) {
if (l.size() < r.size()) return {};
reverse(begin(l), end(l)), reverse(begin(r), end(r));
int n = l.size() - r.size() + 1;
l.resize(n), r.resize(n);
l *= inverse(r);
return {rend(l) - n, rend(l)};
}
template <class T> vector<T>& operator/=(vector<T>& l, const vector<T>& r) {
return l = l / r;
}
template <class T> vector<T> operator%(vector<T> l, const vector<T>& r) {
if (l.size() < r.size()) return l;
l -= l / r * r;
return {begin(l), begin(l) + (r.size() - 1)};
}
template <class T> vector<T>& operator%=(vector<T>& l, const vector<T>& r) {
return l = l % r;
}
template <class T> vector<T> derivative(const vector<T>& a) {
vector<T> res(max((int)a.size() - 1, 0));
for (int i = 0; i < (int)res.size(); ++i) res[i] = (i + 1) * a[i + 1];
return res;
}
template <class T> vector<T> primitive(const vector<T>& a) {
vector<T> res(a.size() + 1);
for (int i = 1; i < (int)res.size(); ++i) res[i] = a[i - 1] / i;
return res;
}
template <class T> vector<T> logarithm(const vector<T>& a) {
assert(not a.empty() and a[0] == 1);
auto res = primitive(derivative(a) * inverse(a));
return {begin(res), begin(res) + a.size()};
}
template <class T> vector<T> exponent(const vector<T>& a) {
assert(a.empty() or a[0] == 0);
vector<T> b{1};
while (b.size() < a.size()) {
vector<T> x(begin(a), begin(a) + min(a.size(), 2 * b.size()));
x[0] += 1;
b.resize(2 * b.size());
x -= logarithm(b);
x *= {begin(b), begin(b) + b.size() / 2};
for (auto i = b.size() / 2; i < min(x.size(), b.size()); ++i) b[i] = x[i];
}
return {begin(b), begin(b) + a.size()};
}
template <class T, class F = multiplies<T>>
T power(T a, long long n, F op = multiplies<T>(), T e = {1}) {
assert(n >= 0);
T res = e;
while (n) {
if (n & 1) res = op(res, a);
if (n >>= 1) a = op(a, a);
}
return res;
}
template <unsigned Mod> struct Modular {
using M = Modular;
unsigned v;
Modular(long long a = 0) : v((a %= Mod) < 0 ? a + Mod : a) {}
M operator-() const { return M() -= *this; }
M& operator+=(M r) { if ((v += r.v) >= Mod) v -= Mod; return *this; }
M& operator-=(M r) { if ((v += Mod - r.v) >= Mod) v -= Mod; return *this; }
M& operator*=(M r) { v = (uint64_t)v * r.v % Mod; return *this; }
M& operator/=(M r) { return *this *= power(r, Mod - 2); }
friend M operator+(M l, M r) { return l += r; }
friend M operator-(M l, M r) { return l -= r; }
friend M operator*(M l, M r) { return l *= r; }
friend M operator/(M l, M r) { return l /= r; }
friend bool operator==(M l, M r) { return l.v == r.v; }
};
template <unsigned Mod> void ntt(vector<Modular<Mod>>& a, bool inverse) {
static vector<Modular<Mod>> dt(30), idt(30);
if (dt[0] == 0) {
Modular<Mod> root = 2;
while (power(root, (Mod - 1) / 2) == 1) root += 1;
for (int i = 0; i < 30; ++i)
dt[i] = -power(root, (Mod - 1) >> (i + 2)), idt[i] = 1 / dt[i];
}
int n = a.size();
assert((n & (n - 1)) == 0);
if (not inverse) {
for (int w = n; w >>= 1; ) {
Modular<Mod> t = 1;
for (int s = 0, k = 0; s < n; s += 2 * w) {
for (int i = s, j = s + w; i < s + w; ++i, ++j) {
auto x = a[i], y = a[j] * t;
if (x.v >= Mod) x.v -= Mod;
a[i].v = x.v + y.v, a[j].v = x.v + (Mod - y.v);
}
t *= dt[__builtin_ctz(++k)];
}
}
} else {
for (int w = 1; w < n; w *= 2) {
Modular<Mod> t = 1;
for (int s = 0, k = 0; s < n; s += 2 * w) {
for (int i = s, j = s + w; i < s + w; ++i, ++j) {
auto x = a[i], y = a[j];
a[i] = x + y, a[j].v = x.v + (Mod - y.v), a[j] *= t;
}
t *= idt[__builtin_ctz(++k)];
}
}
}
auto c = 1 / Modular<Mod>(inverse ? n : 1);
for (auto&& e : a) e *= c;
}
template <unsigned Mod>
vector<Modular<Mod>> operator*(vector<Modular<Mod>> l, vector<Modular<Mod>> r) {
if (l.empty() or r.empty()) return {};
int n = l.size(), m = r.size(), sz = 1 << __lg(2 * (n + m - 1) - 1);
if (min(n, m) < 30) {
vector<long long> res(n + m- 1);
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j)
res[i + j] += (l[i] * r[j]).v;
return {begin(res), end(res)};
}
bool eq = l == r;
l.resize(sz), ntt(l, false);
if (eq) r = l;
else r.resize(sz), ntt(r, false);
for (int i = 0; i < sz; ++i) l[i] *= r[i];
ntt(l, true), l.resize(n + m - 1);
return l;
}
template <unsigned Mod>
vector<Modular<Mod>> inverse(const vector<Modular<Mod>>& a) {
assert(not a.empty() and not (a[0] == 0));
vector<Modular<Mod>> b{1 / a[0]};
while (b.size() < a.size()) {
vector<Modular<Mod>> x(begin(a), begin(a) + min(a.size(), 2 * b.size()));
auto y = b;
x.resize(2 * b.size()), ntt(x, false);
y.resize(2 * b.size()), ntt(y, false);
for (int i = 0; i < (int)x.size(); ++i) x[i] *= y[i];
ntt(x, true);
x >>= b.size();
x.resize(2 * b.size()), ntt(x, false);
for (int i = 0; i < (int)x.size(); ++i) x[i] *= -y[i];
ntt(x, true);
b.insert(end(b), begin(x), begin(x) + b.size());
}
return {begin(b), begin(b) + a.size()};
}
constexpr long long mod = 998244353;
using Mint = Modular<mod>;
int main() {
int n = getint<int>();
vector<Mint> a(n);
Mint f(1);
for (int i = 0; i < n; ++i) {
f *= (i + 1);
a[i] = f;
}
a = inverse(a);
Mint sum(1);
for (int i = 0; i < n; ++i) {
sum += -a[i];
}
cout << sum.v << '\n';
}
りあん