結果
問題 | No.1381 Simple Geometry 1 |
ユーザー | kaikey |
提出日時 | 2021-02-07 21:02:14 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 3,437 bytes |
コンパイル時間 | 2,098 ms |
コンパイル使用メモリ | 200,952 KB |
最終ジャッジ日時 | 2025-01-18 14:07:46 |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 29 |
コンパイルメッセージ
main.cpp:35:72: warning: overflow in conversion from ‘double’ to ‘lint’ {aka ‘int’} changes value from ‘1.0e+18’ to ‘2147483647’ [-Woverflow] 35 | const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e18; | ^~~~
ソースコード
#include <bits/stdc++.h> #include <random> using namespace std; typedef unsigned long long _ulong; typedef int lint; typedef long double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld; #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((lint)(x).size()) #define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i) #define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) #define endk '\n' #define fi first #define se second struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; template<class T> auto add = [](T a, T b) -> T { return a + b; }; template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); }; template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); }; template<class T> using V = vector<T>; using Vl = V<lint>; using VVl = V<Vl>; template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) { for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : ""); return os; } template< typename T >istream& operator>>(istream& is, vector< T >& v) { for (T& in : v) is >> in; return is; } template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); } lint ceil(lint a, lint b) { return (a + b - 1) / b; } lint digit(lint a) { return (lint)log10(a); } lint e_dist(plint a, plint b) { return abs(a.fi - b.fi) * abs(a.fi - b.fi) + abs(a.se - b.se) * abs(a.se - b.se); } lint m_dist(plint a, plint b) { return abs(a.fi - b.fi) + abs(a.se - b.se); } void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); } const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e18; lint dx[8] = { 1, 0, -1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 }; bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; } struct Edge { lint from, to; lint cost; Edge(lint u, lint v, lint c) { cost = c; from = u; to = v; } bool operator<(const Edge& e) const { return cost < e.cost; } }; struct WeightedEdge { lint to; lint cost; WeightedEdge(lint v, lint c = 1) { to = v; cost = c; } bool operator<(const WeightedEdge& e) const { return cost < e.cost; } }; using WeightedGraph = V<V<WeightedEdge>>; typedef pair<lint, plint> tlint; typedef pair<plint, tlint> qlint; typedef pair<string, lint> valstring; vector< int64_t > divisor(int64_t n) { vector< int64_t > ret; for (int64_t i = 1; i * i <= n; i++) { if (n % i == 0) { ret.push_back(i); if (i * i != n) ret.push_back(n / i); } } sort(begin(ret), end(ret)); return (ret); } lint X, Y, Z, W; int main() { cin >> X >> Y >> Z >> W; long double ng = 0, ok = X; auto check = [&](ld ab) { ld bc = X / ab; return Y * Y + ab * ab >= (sqrt(bc * bc + Z * Z) + W) * (sqrt(bc * bc + Z * Z) + W); }; REP(_, 100) { ld mid = (ok + ng) / 2; if (check(mid)) ok = mid; else ng = mid; } ld _ab = ok, _bc = X / ok; ld ans = X; ans -= _ab * Y / 2; ans -= _bc * Z / 2; ans -= (_ab - Z) * (_bc - Y) / 2; cout << ans << endk; }