結果
| 問題 |
No.1582 Vertexes vs Edges
|
| コンテスト | |
| ユーザー |
torisasami4
|
| 提出日時 | 2021-07-02 22:17:02 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 107 ms / 2,000 ms |
| コード長 | 7,638 bytes |
| コンパイル時間 | 2,132 ms |
| コンパイル使用メモリ | 188,796 KB |
| 実行使用メモリ | 25,120 KB |
| 最終ジャッジ日時 | 2024-06-29 11:55:17 |
| 合計ジャッジ時間 | 4,945 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 36 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(x) push_back(x)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep2(i, n) for (ll i = (ll)n - 1; i >= 0; i--)
#define REP(i, l, r) for (ll i = l; i < (r); i++)
#define REP2(i, l, r) for (ll i = (ll)r - 1; i >= (l); i--)
#define siz(x) (ll)x.size()
template <class T>
using rque = priority_queue<T, vector<T>, greater<T>>;
const ll mod = (int)1e9 + 7;
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmax(T &a, const T &b) {
if (b > a) {
a = b;
return 1;
}
return 0;
}
ll gcd(ll a, ll b)
{
if(a == 0)
return b;
if(b == 0)
return a;
ll cnt = a % b;
while (cnt != 0)
{
a = b;
b = cnt;
cnt = a % b;
}
return b;
}
long long extGCD(long long a, long long b, long long &x, long long &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
struct UnionFind
{
vector<ll> data;
int num;
UnionFind(int sz)
{
data.assign(sz, -1);
num = sz;
}
bool unite(int x, int y)
{
x = find(x), y = find(y);
if (x == y)
return (false);
if (data[x] > data[y])
swap(x, y);
data[x] += data[y];
data[y] = x;
num--;
return (true);
}
int find(int k)
{
if (data[k] < 0)
return (k);
return (data[k] = find(data[k]));
}
ll size(int k)
{
return (-data[find(k)]);
}
bool same(int x, int y){
return find(x) == find(y);
}
};
ll M = 1000000007;
template <int mod>
struct ModInt
{
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p)
{
if ((x += p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p)
{
if ((x += mod - p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p)
{
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p)
{
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const
{
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0)
{
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const
{
ModInt ret(1), mul(x);
while (n > 0)
{
if (n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p)
{
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a)
{
int64_t t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static int get_mod() { return mod; }
};
using mint = ModInt<mod>;
mint mpow(mint x, ll n)
{
mint ans = 1;
while (n != 0)
{
if (n & 1)
ans *= x;
x *= x;
n = n >> 1;
}
return ans;
}
ll mpow2(ll x, ll n, ll mod)
{
ll ans = 1;
while (n != 0)
{
if (n & 1)
ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
return ans;
}
vector<mint> fac;
vector<mint> ifac;
void setcomb(int sz = 2000010)
{
fac.assign(sz + 1, 0);
ifac.assign(sz + 1, 0);
fac[0] = 1;
for (ll i = 0; i < sz; i++)
{
fac[i + 1] = fac[i] * (i + 1); // n!(mod M)
}
ifac[sz] = fac[sz].inverse();
for (ll i = sz; i > 0; i--)
{
ifac[i - 1] = ifac[i] * i;
}
}
mint comb(ll a, ll b)
{
if(fac.size() == 0)
setcomb();
if (a == 0 && b == 0)
return 1;
if (a < b || a < 0 || b < 0)
return 0;
return ifac[a - b] * ifac[b] * fac[a];
}
mint perm(ll a, ll b)
{
if(fac.size() == 0)
setcomb();
if (a == 0 && b == 0)
return 1;
if (a < b || a < 0)
return 0;
return fac[a] * ifac[a - b];
}
long long modinv(long long a)
{
long long b = M, u = 1, v = 0;
while (b)
{
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= M;
if (u < 0)
u += M;
return u;
}
ll modinv2(ll a, ll mod)
{
ll b = mod, u = 1, v = 0;
while (b)
{
ll t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= mod;
if (u < 0)
u += mod;
return u;
}
template< typename flow_t >
struct Dinic {
const flow_t INF;
struct edge {
int to;
flow_t cap;
int rev;
bool isrev;
int idx;
};
vector< vector< edge > > graph;
vector< int > min_cost, iter;
Dinic(int V) : INF(numeric_limits< flow_t >::max()), graph(V) {}
void add_edge(int from, int to, flow_t cap, int idx = -1) {
graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});
graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});
}
bool bfs(int s, int t) {
min_cost.assign(graph.size(), -1);
queue< int > que;
min_cost[s] = 0;
que.push(s);
while(!que.empty() && min_cost[t] == -1) {
int p = que.front();
que.pop();
for(auto &e : graph[p]) {
if(e.cap > 0 && min_cost[e.to] == -1) {
min_cost[e.to] = min_cost[p] + 1;
que.push(e.to);
}
}
}
return min_cost[t] != -1;
}
flow_t dfs(int idx, const int t, flow_t flow) {
if(idx == t) return flow;
for(int &i = iter[idx]; i < graph[idx].size(); i++) {
edge &e = graph[idx][i];
if(e.cap > 0 && min_cost[idx] < min_cost[e.to]) {
flow_t d = dfs(e.to, t, min(flow, e.cap));
if(d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
flow_t max_flow(int s, int t) {
flow_t flow = 0;
while(bfs(s, t)) {
iter.assign(graph.size(), 0);
flow_t f = 0;
while((f = dfs(s, t, INF)) > 0) flow += f;
}
return flow;
}
vector<pair<pair<int,int>,int>> get_edges() {
vector<pair<pair<int,int>,int>> E;
for (int i = 0; i < graph.size(); i++)
{
for (auto &e : graph[i])
{
if (e.isrev)
continue;
auto &rev_e = graph[e.to][e.rev];
E.push_back(mp(mp(i, e.to), rev_e.cap));
}
}
return E;
}
void output()
{
for (int i = 0; i < graph.size(); i++)
{
for (auto &e : graph[i])
{
if (e.isrev)
continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
}
}
}
};
int main(){
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
ll n;
cin >> n;
vector<ll> li[n];
ll u[n - 1], v[n - 1];
rep(i, n - 1) cin >> u[i] >> v[i], li[--u[i]].pb(--v[i]), li[v[i]].pb(u[i]);
ll c[n];
c[0] = 0;
function<void(ll, ll)> dfs = [&](ll now, ll par){
for(auto e: li[now]){
if(e != par){
c[e] = c[now] ^ 1;
dfs(e, now);
}
}
};
dfs(0, -1);
Dinic<int> mf(n + 2);
rep(i,n){
if(c[i])
mf.add_edge(i, n + 1, 1);
else
mf.add_edge(n, i, 1);
}
rep(i,n-1){
if(c[u[i]])
swap(u[i], v[i]);
mf.add_edge(u[i], v[i], 1);
}
cout << mf.max_flow(n, n + 1) << endl;
}
torisasami4