結果
| 問題 |
No.1595 The Final Digit
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-07-11 19:00:29 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 34 ms / 2,000 ms |
| コード長 | 3,620 bytes |
| コンパイル時間 | 86 ms |
| コンパイル使用メモリ | 13,056 KB |
| 実行使用メモリ | 11,392 KB |
| 最終ジャッジ日時 | 2024-07-02 03:10:50 |
| 合計ジャッジ時間 | 1,479 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 |
ソースコード
mod = 10
#拡張Euclidの互除法
def extgcd(a, b, d = 0):
g = a
if b == 0:
x, y = 1, 0
else:
x, y, g = extgcd(b, a % b)
x, y = y, x - a // b * y
return x, y, g
#mod p における逆元
def invmod(a, p):
x, y, g = extgcd(a, p)
x %= p
return x
#行列ライブラリ(遅い)
class Matrix:
def __init__(self, n, m, mat=None):
self.n = n
self.m = m
self.mat = [[0] * self.m for i in range(self.n)]
if mat:
for i in range(self.n):
self.mat[i] = mat[i]
def is_square(self):
return self.n == self.m
def __getitem__(self, key):
if isinstance(key, slice):
return self.mat[key]
else:
assert key >= 0
return self.mat[key]
def id(n):
res = Matrix(n, n)
for i in range(n):
res[i][i] = 1
return res
def __len__(self):
return len(self.mat)
def __str__(self):
return "\n".join(" ".join(map(str, self[i])) for i in range(self.n))
def times(self, k):
res = [[0] * self.m for i in range(self.n)]
for i in range(self.n):
for j in range(self.m):
res[i][j] = k * self[i][j] % mod
return Matrix(self.n, self.m, res)
def __pos__(self):
return self
def __neg__(self):
return self.times(-1)
def __add__(self, other):
res = [[0] * self.m for i in range(self.n)]
for i in range(self.n):
for j in range(self.m):
res[i][j] = (self[i][j] + other[i][j]) % mod
return Matrix(self.n, self.m, res)
def __sub__(self, other):
res = [[0] * self.m for i in range(self.n)]
for i in range(self.n):
for j in range(self.m):
res[i][j] = (self[i][j] - other[i][j]) % mod
return Matrix(self.n, self.m, res)
def __mul__(self, other):
if other.__class__ == Matrix:
res = [[0] * other.m for i in range(self.n)]
for i in range(self.n):
for k in range(self.m):
for j in range(other.m):
res[i][j] += self[i][k] * other[k][j]
res[i][j] %= mod
return Matrix(self.n, other.m, res)
else:
return self.times(other)
def __rmul__(self, other):
return self.times(other)
def __pow__(self, k):
tmp = Matrix(self.n, self.n, self.mat)
res = Matrix.id(self.n)
while k:
if k & 1:
res *= tmp
tmp *= tmp
k >>= 1
return res
def determinant(self):
res = 1
tmp = Matrix(self.n, self.n, self.mat)
for j in range(self.n):
if tmp[j][j] == 0:
for i in range(j + 1, self.n):
if tmp[i][j] != 0: break
else:
return 0
tmp.mat[j], tmp.mat[i] = tmp.mat[i], tmp.mat[j]
res *= -1
inv = invmod(tmp[j][j], mod)
for i in range(j + 1, self.n):
c = -inv * tmp[i][j] % mod
for k in range(self.n):
tmp[i][k] += c * tmp[j][k]
tmp[i][k] %= mod
for i in range(self.n):
res *= tmp[i][i]
res %= mod
return res
p, q, r, k = map(int, input().split())
p %= 10; q %= 10; r %= 10
b, m = Matrix(3, 1, [[r], [q], [p]]), Matrix(3, 3, [[1, 1, 1], [1, 0, 0], [0, 1, 0]])
m **= k - 3
ans = m * b
print(ans[0][0])