結果
| 問題 | No.1068 #いろいろな色 / Red and Blue and more various colors (Hard) |
| コンテスト | |
| ユーザー |
keijak
|
| 提出日時 | 2021-10-19 02:52:21 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 297 ms / 3,500 ms |
| コード長 | 13,973 bytes |
| コンパイル時間 | 4,573 ms |
| コンパイル使用メモリ | 295,224 KB |
| 実行使用メモリ | 16,000 KB |
| 最終ジャッジ日時 | 2024-09-20 00:05:01 |
| 合計ジャッジ時間 | 11,023 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 29 |
ソースコード
#include <bits/stdc++.h>
#define REP_(i, a_, b_, a, b, ...) \
for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using i64 = long long;
#include <atcoder/math>
#include <atcoder/convolution>
#include <atcoder/modint>
using Mint = atcoder::modint998244353;
std::ostream &operator<<(std::ostream &os, const Mint &m) {
return os << m.val();
}
template<typename T, typename U>
inline bool chmax(T &a, U b) {
return a < b and ((a = std::move(b)), true);
}
template<typename T, typename U>
inline bool chmin(T &a, U b) {
return a > b and ((a = std::move(b)), true);
}
template<typename T>
inline int ssize(const T &a) {
return (int) a.size();
}
template<class T>
inline std::ostream &print_one(const T &x, char endc) {
if constexpr (std::is_same_v<T, bool>) {
return std::cout << (x ? "Yes" : "No") << endc;
} else {
return std::cout << x << endc;
}
}
template<class T>
inline std::ostream &print(const T &x) { return print_one(x, '\n'); }
template<typename T, typename... Ts>
std::ostream &print(const T &head, Ts... tail) {
return print_one(head, ' '), print(tail...);
}
inline std::ostream &print() { return std::cout << '\n'; }
template<typename Container>
std::ostream &print_seq(const Container &a, std::string_view sep = " ",
std::string_view ends = "\n",
std::ostream &os = std::cout) {
auto b = std::begin(a), e = std::end(a);
for (auto it = std::begin(a); it != e; ++it) {
if (it != b) os << sep;
os << *it;
}
return os << ends;
}
template<typename T, typename = void>
struct is_iterable : std::false_type {};
template<typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
decltype(std::end(std::declval<T>()))>>
: std::true_type {
};
template<typename T, typename = std::enable_if_t<
is_iterable<T>::value && !std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
return print_seq(a, ", ", "", (os << "{")) << "}";
}
struct VersatileInput {
template<typename T>
operator T() const {
T x;
std::cin >> x;
return x;
}
struct Sized {
std::size_t n;
template<typename T>
operator T() const {
T x(n);
for (auto &e: x) std::cin >> e;
return x;
}
};
Sized operator()(std::size_t n) const { return {n}; }
} const in;
inline void check(bool cond, const char *message = "!ERROR!") {
if (not cond) throw std::runtime_error(message);
}
#ifdef MY_DEBUG
#include "debug_dump.hpp"
#else
#define DUMP(...)
#define cerr if(false)std::cerr
#endif
using namespace std;
// T: modint
template<typename T, int DMAX>
struct NTTMult {
static_assert(atcoder::internal::is_modint<T>::value, "Requires ACL modint.");
static_assert(T::mod() == 998244353, "Requires an NTT-friendly mod.");
using value_type = T;
static constexpr int dmax() { return DMAX; }
static std::vector<T> multiply(const std::vector<T> &x,
const std::vector<T> &y) {
std::vector<T> res = atcoder::convolution(x, y);
if (int(res.size()) > DMAX + 1) res.resize(DMAX + 1); // shrink
return res;
}
static std::vector<T> invert(const std::vector<T> &x) {
assert(x[0].val() != 0); // must be invertible
const int n = x.size();
std::vector<T> res(n);
res[0] = x[0].inv();
for (int i = 1; i < n; i <<= 1) {
const int m = std::min(2 * i, n);
std::vector<T> f(2 * i), g(2 * i);
for (int j = 0; j < m; ++j) f[j] = x[j];
for (int j = 0; j < i; ++j) g[j] = res[j];
f = atcoder::convolution(f, g);
f.resize(2 * i);
for (int j = 0; j < i; ++j) f[j] = 0;
f = atcoder::convolution(f, g);
for (int j = i; j < m; ++j) res[j] = -f[j];
}
return res;
}
};
// Formal Power Series (dense format).
template<typename Mult>
struct DenseFPS {
using T = typename Mult::value_type;
static constexpr int dmax() { return Mult::dmax(); }
// Coefficients of terms from x^0 to x^DMAX.
std::vector<T> coeff_;
DenseFPS() : coeff_(1, 0) {} // = 0 * x^0
explicit DenseFPS(std::vector<T> c) : coeff_(std::move(c)) {
while (size() > dmax() + 1) coeff_.pop_back();
assert(size() > 0);
}
DenseFPS(std::initializer_list<T> init) : coeff_(init.begin(), init.end()) {
while (size() > dmax() + 1) coeff_.pop_back();
assert(size() > 0);
}
DenseFPS(const DenseFPS &other) : coeff_(other.coeff_) {}
DenseFPS(DenseFPS &&other) : coeff_(std::move(other.coeff_)) {}
DenseFPS &operator=(const DenseFPS &other) {
coeff_ = other.coeff_;
return *this;
}
DenseFPS &operator=(DenseFPS &&other) {
coeff_ = std::move(other.coeff_);
return *this;
}
// size <= dmax + 1
inline int size() const { return static_cast<int>(coeff_.size()); }
// Returns the coefficient of x^k.
inline T operator[](int k) const { return (k >= size()) ? 0 : coeff_[k]; }
DenseFPS &operator+=(const T &scalar) {
coeff_[0] += scalar;
return *this;
}
friend DenseFPS operator+(const DenseFPS &x, const T &scalar) {
return DenseFPS(x) += scalar;
}
DenseFPS &operator+=(const DenseFPS &other) {
if (size() < other.size()) coeff_.resize(other.size());
for (int i = 0; i < other.size(); ++i) coeff_[i] += other[i];
return *this;
}
friend DenseFPS operator+(const DenseFPS &x, const DenseFPS &y) {
return DenseFPS(x) += y;
}
DenseFPS &operator-=(const DenseFPS &other) {
if (size() < other.size()) coeff_.resize(other.size());
for (int i = 0; i < other.size(); ++i) coeff_[i] -= other[i];
return *this;
}
friend DenseFPS operator-(const DenseFPS &x, const DenseFPS &y) {
return DenseFPS(x) -= y;
}
DenseFPS operator-() const { return *this * -1; }
DenseFPS &operator*=(const T &scalar) {
for (auto &x: coeff_) x *= scalar;
return *this;
}
friend DenseFPS operator*(const DenseFPS &x, const T &scalar) {
return DenseFPS(x) *= scalar;
}
friend DenseFPS operator*(const T &scalar, const DenseFPS &y) {
return DenseFPS{scalar} *= y;
}
DenseFPS &operator*=(const DenseFPS &other) {
return *this =
DenseFPS(Mult::multiply(std::move(this->coeff_), other.coeff_));
}
friend DenseFPS operator*(const DenseFPS &x, const DenseFPS &y) {
return DenseFPS(Mult::multiply(x.coeff_, y.coeff_));
}
DenseFPS &operator/=(const T &scalar) {
for (auto &x: coeff_) x /= scalar;
return *this;
}
friend DenseFPS operator/(const DenseFPS &x, const T &scalar) {
return DenseFPS(x) /= scalar;
}
friend DenseFPS operator/(const T &scalar, const DenseFPS &y) {
return DenseFPS{scalar} /= y;
}
DenseFPS &operator/=(const DenseFPS &other) {
return *this *= DenseFPS(Mult::invert(other.coeff_));
}
friend DenseFPS operator/(const DenseFPS &x, const DenseFPS &y) {
return x * DenseFPS(Mult::invert(y.coeff_));
}
DenseFPS pow(i64 t) const {
assert(t >= 0);
DenseFPS res = {1}, base = *this;
while (t) {
if (t & 1) res *= base;
base *= base;
t >>= 1;
}
return res;
}
// Multiplies by (1 + c * x^k).
void multiply2_inplace(int k, int c) {
assert(k > 0);
if (size() <= dmax()) {
coeff_.resize(min(size() + k, dmax() + 1), 0);
}
for (int i = size() - 1; i >= k; --i) {
coeff_[i] += coeff_[i - k] * c;
}
}
// Multiplies by (1 + c * x^k).
DenseFPS multiply2(int k, int c) const {
DenseFPS res = *this;
res.multiply2_inplace(k, c);
return res;
}
// Divides by (1 + c * x^k).
void divide2_inplace(int k, int c) {
assert(k > 0);
for (int i = k; i < size(); ++i) {
coeff_[i] -= coeff_[i - k] * c;
}
}
// Divides by (1 + c * x^k).
DenseFPS divide2(int k, int c) const {
DenseFPS res = *this;
res.divide2_inplace(k, c);
return res;
}
// Multiplies by x^k.
void shift_inplace(int k) {
if (k > 0) {
if (size() <= dmax()) {
coeff_.resize(min(size() + k, dmax() + 1), 0);
}
for (int i = size() - 1; i >= k; --i) {
coeff_[i] = coeff_[i - k];
}
for (int i = k - 1; i >= 0; --i) {
coeff_[i] = 0;
}
} else if (k < 0) {
k *= -1;
for (int i = k; i < size(); ++i) {
coeff_[i - k] = coeff_[i];
}
for (int i = size() - k; i < size(); ++i) {
// If coefficients of degrees higher than dmax() were truncated
// beforehand, you lose the information. Ensure dmax() is big enough.
coeff_[i] = 0;
}
}
}
// Multiplies by x^k.
DenseFPS shift(int k) const {
DenseFPS res = *this;
res.shift_inplace(k);
return res;
}
T eval(const T &a) const {
T res = 0, x = 1;
for (auto c: coeff_) {
res += c * x;
x *= a;
}
return res;
}
};
// Formal Power Series (sparse format).
template<typename T>
struct SparseFPS {
int size_;
std::vector<int> degree_;
std::vector<T> coeff_;
SparseFPS() : size_(0) {}
explicit SparseFPS(std::vector<std::pair<int, T>> terms)
: size_(terms.size()), degree_(size_), coeff_(size_) {
// Sort by degree.
std::sort(terms.begin(), terms.end(),
[](const auto &x, const auto &y) { return x.first < y.first; });
for (int i = 0; i < size_; ++i) {
auto[d, c] = terms[i];
assert(d >= 0);
degree_[i] = d;
coeff_[i] = c;
}
}
SparseFPS(std::initializer_list<std::pair<int, T>> terms)
: SparseFPS(std::vector<std::pair<int, T>>(terms.begin(), terms.end())) {}
inline int size() const { return size_; }
inline const T &coeff(int i) const { return coeff_[i]; }
inline int degree(int i) const { return degree_[i]; }
int max_degree() const { return (size_ == 0) ? 0 : degree_.back(); }
void emplace_back(int d, T c) {
assert(d >= 0);
if (not degree_.empty()) {
assert(d > degree_.back());
}
degree_.push_back(std::move(d));
coeff_.push_back(std::move(c));
++size_;
}
// Returns the coefficient of x^d.
T operator[](int d) const {
auto it = std::lower_bound(degree_.begin(), degree_.end(), d);
if (it == degree_.end() or *it != d) return (T) (0);
int j = std::distance(degree_.begin(), it);
return coeff_[j];
}
SparseFPS &operator+=(const T &scalar) {
for (auto &x: coeff_) x += scalar;
return *this;
}
friend SparseFPS operator+(const SparseFPS &x, const T &scalar) {
SparseFPS res = x;
res += scalar;
return res;
}
SparseFPS &operator+=(const SparseFPS &other) {
*this = this->add(other);
return *this;
}
friend SparseFPS operator+(const SparseFPS &x, const SparseFPS &y) {
return x.add(y);
}
SparseFPS &operator*=(const T &scalar) {
for (auto &x: coeff_) x *= scalar;
return *this;
}
friend SparseFPS operator*(const SparseFPS &x, const T &scalar) {
SparseFPS res = x;
res *= scalar;
return res;
}
SparseFPS &operator-=(const SparseFPS &other) {
*this = this->add(other * -1);
return *this;
}
friend SparseFPS operator-(const SparseFPS &x, const SparseFPS &y) {
return x.add(y * -1);
}
private:
SparseFPS add(const SparseFPS &other) const {
SparseFPS res;
int j = 0; // two pointers (i, j)
for (int i = 0; i < size(); ++i) {
const int deg = this->degree(i);
for (; j < other.size() and other.degree(j) < deg; ++j) {
res.emplace_back(other.degree(j), other.coeff(j));
}
T c = this->coeff(i);
if (j < other.size() and other.degree(j) == deg) {
c += other.coeff(j);
++j;
}
if (c != 0) {
res.emplace_back(deg, c);
}
}
for (; j < other.size(); ++j) {
res.emplace_back(other.degree(j), other.coeff(j));
}
return res;
}
};
// Polynomial addition (dense + sparse).
template<typename FPS, typename T = typename FPS::T>
FPS &operator+=(FPS &x, const SparseFPS<T> &y) {
for (int i = 0; i < y.size(); ++i) {
if (y.degree(i) > FPS::dmax()) break; // ignore
x.coeff_[y.degree(i)] += y.coeff(i);
}
return x;
}
template<typename FPS, typename T = typename FPS::T>
FPS operator+(const FPS &x, const SparseFPS<T> &y) {
auto res = x;
res += y;
return res;
}
template<typename FPS, typename T = typename FPS::T>
FPS operator+(const SparseFPS<T> &x, const FPS &y) {
return y + x; // commutative
}
// Polynomial multiplication (dense * sparse).
template<typename FPS, typename T = typename FPS::T>
FPS &operator*=(FPS &x, const SparseFPS<T> &y) {
if (y.size() == 0) {
return x *= 0;
}
const int yd_max = y.degree(y.size() - 1);
const int xd_max = x.size() - 1;
const int n = std::min(xd_max + yd_max, FPS::dmax()) + 1;
if (x.size() < n) x.coeff_.resize(n);
T c0 = 0;
int j0 = 0;
if (y.degree(0) == 0) {
c0 = y.coeff(0);
j0 = 1;
}
for (int xd = n - 1; xd >= 0; --xd) {
x.coeff_[xd] *= c0;
for (int j = j0; j < y.size(); ++j) {
int yd = y.degree(j);
if (yd > xd) break;
x.coeff_[xd] += x[xd - yd] * y.coeff(j);
}
}
return x;
}
template<typename FPS, typename T = typename FPS::T>
FPS operator*(const FPS &x, const SparseFPS<T> &y) {
auto res = x;
res *= y;
return res;
}
template<typename FPS, typename T = typename FPS::T>
FPS operator*(const SparseFPS<T> &x, const FPS &y) {
return y * x; // commutative
}
constexpr int D = 200005;
using DF = DenseFPS<NTTMult<Mint, D>>;
using SF = SparseFPS<Mint>;
int main() {
ios_base::sync_with_stdio(false), cin.tie(nullptr);
int n = in, Q = in;
vector<i64> a = in(n);
vector<i64> b = in(Q);
deque<DF> fs;
REP(i, n) {
fs.push_back({Mint(a[i] - 1), 1});
}
while (fs.size() > 1) {
auto g = fs[0] * fs[1];
fs.push_back(move(g));
fs.pop_front();
fs.pop_front();
}
auto &f = fs.front();
REP(i, Q) {
print(f[b[i]]);
}
}
keijak