結果
問題 | No.2125 Inverse Sum |
ユーザー |
|
提出日時 | 2022-11-18 23:38:22 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 625 ms / 2,000 ms |
コード長 | 7,806 bytes |
コンパイル時間 | 2,428 ms |
コンパイル使用メモリ | 210,720 KB |
最終ジャッジ日時 | 2025-02-08 22:30:16 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
#include<bits/stdc++.h>using namespace std;#pragma GCC optimize("Ofast")#define rep(i,n) for(ll i=0;i<n;i++)#define repl(i,l,r) for(ll i=(l);i<(r);i++)#define per(i,n) for(ll i=(n)-1;i>=0;i--)#define perl(i,r,l) for(ll i=r-1;i>=l;i--)#define fi first#define se second#define pb push_back#define ins insert#define pqueue(x) priority_queue<x,vector<x>,greater<x>>#define all(x) (x).begin(),(x).end()#define CST(x) cout<<fixed<<setprecision(x)#define vtpl(x,y,z) vector<tuple<x,y,z>>#define rev(x) reverse(x);using ll=long long;using vl=vector<ll>;using vvl=vector<vector<ll>>;using pl=pair<ll,ll>;using vpl=vector<pl>;using vvpl=vector<vpl>;const ll MOD=1000000007;const ll MOD9=998244353;const int inf=1e9+10;const ll INF=4e18;const ll dy[9]={0,1,-1,0,1,1,-1,-1,0};const ll dx[9]={1,0,0,-1,1,-1,1,-1,0};template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b;return true;}return false;}template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b;return true;}return false;}const int mod = MOD9;const int max_n = 200005;struct mint {ll x; // typedef long long ll;mint(ll x=0):x((x%mod+mod)%mod){}mint operator-() const { return mint(-x);}mint& operator+=(const mint a) {if ((x += a.x) >= mod) x -= mod;return *this;}mint& operator-=(const mint a) {if ((x += mod-a.x) >= mod) x -= mod;return *this;}mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}mint operator+(const mint a) const { return mint(*this) += a;}mint operator-(const mint a) const { return mint(*this) -= a;}mint operator*(const mint a) const { return mint(*this) *= a;}mint pow(ll t) const {if (!t) return 1;mint a = pow(t>>1);a *= a;if (t&1) a *= *this;return a;}bool operator==(const mint &p) const { return x == p.x; }bool operator!=(const mint &p) const { return x != p.x; }// for prime modmint inv() const { return pow(mod-2);}mint& operator/=(const mint a) { return *this *= a.inv();}mint operator/(const mint a) const { return mint(*this) /= a;}};istream& operator>>(istream& is, mint& a) { return is >> a.x;}ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}using vm=vector<mint>;using vvm=vector<vm>;struct combination {vector<mint> fact, ifact;combination(int n):fact(n+1),ifact(n+1) {assert(n < mod);fact[0] = 1;for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;ifact[n] = fact[n].inv();for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;}mint operator()(int n, int k) {if (k < 0 || k > n) return 0;return fact[n]*ifact[k]*ifact[n-k];}}comb(max_n);template <typename X, typename M>//faがint lenになってるstruct SegTreeLazy {//遅延セグ木 単位元に注意(updateなら選ばれない数、affineなら(1,0))using FX = function<X(X, X)>;using FA = function<X(X, M, int)>;using FM = function<M(M, M)>;int n;FX fx;FA fa;FM fm;const X ex;const M em;vector<X> dat;vector<M> lazy;SegTreeLazy(int n_, FX fx_, FA fa_, FM fm_, X ex_, M em_): n(), fx(fx_), fa(fa_), fm(fm_), ex(ex_), em(em_), dat(n_ * 4, ex), lazy(n_ * 4, em) {int x = 1;while (n_ > x) x *= 2;n = x;}void set(int i, X x) { dat[i + n - 1] = x; }void build() {for (int k = n - 2; k >= 0; k--) dat[k] = fx(dat[2 * k + 1], dat[2 * k + 2]);}/* lazy eval */void eval(int k, int len) {if (lazy[k] == em) return; // 更新するものが無ければ終了if (k < n - 1) { // 葉でなければ子に伝搬lazy[k * 2 + 1] = fm(lazy[k * 2 + 1], lazy[k]);lazy[k * 2 + 2] = fm(lazy[k * 2 + 2], lazy[k]);}// 自身を更新dat[k] = fa(dat[k],lazy[k],len);//fa(dat[k], fp(lazy[k], len));lazy[k] = em;}void update(int a, int b, M x, int k, int l, int r) {eval(k, r - l);if (a <= l && r <= b) { // 完全に内側の時lazy[k] = fm(lazy[k], x);eval(k, r - l);} else if (a < r && l < b) { // 一部区間が被る時update(a, b, x, k * 2 + 1, l, (l + r) / 2); // 左の子update(a, b, x, k * 2 + 2, (l + r) / 2, r); // 右の子dat[k] = fx(dat[k * 2 + 1], dat[k * 2 + 2]);}}void update(int a, int b, M x) { update(a, b, x, 0, 0, n); }X query_sub(int a, int b, int k, int l, int r) {eval(k, r - l);if (r <= a || b <= l) { // 完全に外側の時return ex;} else if (a <= l && r <= b) { // 完全に内側の時return dat[k];} else { // 一部区間が被る時X vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2);X vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r);return fx(vl, vr);}}X query(int a, int b) { return query_sub(a, b, 0, 0, n); }X operator[](int i){return query(i,i+1);}};//0-indexed,2冪のセグメントツリーtemplate <class T>struct SegTree {private:int n;// 葉の数vector<T> data;// データを格納するvectorT def; // 初期値かつ単位元function<T(T, T)> operation; // 区間クエリで使う処理function<T(T, T)> change;// 点更新で使う処理T find(int a, int b) {T val_left = def, val_right = def;for (a += (n - 1), b += (n - 1); a < b; a >>= 1, b >>= 1){if ((a & 1) == 0){val_left = operation(val_left, data[a]);}if ((b & 1) == 0){val_right = operation(data[--b],val_right);}}return operation(val_left, val_right);}public:// _n:必要サイズ, _def:初期値かつ単位元, _operation:クエリ関数,// _change:更新関数SegTree(size_t _n, T _def, function<T(T, T)> _operation,function<T(T, T)> _change=[](T a,T b){return b;}): def(_def), operation(_operation), change(_change) {n = 1;while (n < _n) {n *= 2;}data = vector<T>(2 * n - 1, def);}void set(int i, T x) { data[i + n - 1] = x; }void build() {for (int k=n-2;k>=0;k--) data[k] = operation(data[2*k+1],data[2*k+2]);}// 場所i(0-indexed)の値をxで更新void update(int i, T x) {i += n - 1;data[i] = change(data[i], x);while (i > 0) {i = (i - 1) / 2;data[i] = operation(data[i * 2 + 1], data[i * 2 + 2]);}}T all_prod(){return data[0];}// [a, b)の区間クエリを実行T query(int a, int b) {//return _query(a, b, 0, 0, n);return find(a,b);}// 添字でアクセスT operator[](int i) {return data[i + n - 1];}};vector<long long> divisor(long long n) {vector<long long> ret;for (long long i = 1; i * i <= n; i++) {if (n % i == 0) {ret.push_back(i);if (i * i != n) ret.push_back(n / i);}}sort(ret.begin(), ret.end()); // 昇順に並べるreturn ret;}int main(){ll p,q;cin >> p >> q;set<pl> st;{ll hoge=gcd(p,q);p/=hoge;q/=hoge;}for(auto a:divisor(q)){for(auto b:divisor(q)){if(q%(a*b)!=0)continue;ll gx=(a+b)*q,gy=a*b*p;if(gx%gy!=0)continue;ll g=gx/gy;st.insert({g*a,g*b});}}cout << st.size() << endl;for(auto p:st){cout << p.first <<" " << p.second << endl;}}