結果
| 問題 |
No.2137 Stairs of Permutation
|
| コンテスト | |
| ユーザー |
siganai
|
| 提出日時 | 2022-11-25 23:38:17 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 27,027 bytes |
| コンパイル時間 | 9,652 ms |
| コンパイル使用メモリ | 278,584 KB |
| 最終ジャッジ日時 | 2025-02-09 00:59:41 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 11 TLE * 11 MLE * 1 |
ソースコード
#line 1 "test.cpp"
//#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
using ll = long long;
using ld = long double;
using pll = pair<ll,ll>;
using pii = pair<int,int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vpii = vector<pii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T,vector<T>,greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i),end(i)
#define all2(i,a) begin(i),begin(i)+a
#define all3(i,a,b) begin(i)+a,begin(i)+b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){ return *min_element(all(a)); }
template<class T> auto max(const T& a){ return *max_element(all(a)); }
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
ll GCD(ll a,ll b) { if(a == 0 || b == 0) return a + b; if(a % b == 0) return b; else return GCD(b,a%b);}
ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){
in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){
ituple(t, make_index_sequence<tuple_size<T>::value>{});}
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
//constexpr int mod = 1000000007;
constexpr int mod = 998244353;
static const double PI = 3.1415926535897932;
template <class F> struct REC {
F f;
REC(F &&f_) : f(forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};
#line 2 "library/modint/LazyMontgomeryModint.hpp"
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(r * mod == 1);
static_assert(mod < (1 << 30));
static_assert((mod & 1) == 1);
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const { return pow(mod - 2); }
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
#line 86 "test.cpp"
using mint = LazyMontgomeryModInt<mod>;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
#line 2 "library/ntt/ntt.hpp"
template<typename mint>
struct NTT{
static constexpr uint32_t get_pr() {
uint32_t _mod = mint::get_mod();
using u64 = uint64_t;
u64 ds[32] = {};
int idx = 0;
u64 m = _mod - 1;
for(u64 i = 2;i * i <= m; ++i) {
if(m % i == 0) {
ds[idx++] = i;
while(m % i == 0) m /= i;
}
}
if (m != 1) ds[idx++] = m;
uint32_t _pr = 2;
while(1) {
int flg = 1;
for(int i = 0;i < idx; ++i) {
u64 a = _pr, b = (_mod - 1) / ds[i],r = 1;
while(b) {
if(b & 1) r = r * a % _mod;
a = a * a % _mod;
b >>= 1;
}
if(r == 1) {
flg = 0;
break;
}
}
if (flg == 1) break;
++_pr;
}
return _pr;
};
static constexpr uint32_t mod = mint::get_mod();
static constexpr uint32_t pr = get_pr();
static constexpr int level = __builtin_ctzll(mod - 1);
mint dw[level], dy[level];
void setwy(int k) {
mint w[level],y[level];
w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
y[k - 1] = w[k - 1].inverse();
for(int i = k - 2;i > 0; --i) w[i] = w[i+1] * w[i+1],y[i] = y[i+1] * y[i+1];
dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
for(int i = 3;i < k;++i) {
dw[i] = dw[i-1] * y[i-2] * w[i];
dy[i] = dy[i-1] * w[i-2] * y[i];
}
}
NTT() {setwy(level);}
void fft4(vector<mint> &a,int k) {
if((int)a.size() <= 1) return;
if(k == 1) {
mint a1 = a[1];
a[1] = a[0] - a[1];
a[0] = a[0] + a1;
return;
}
if (k & 1) {
int v = 1 << (k - 1);
for(int j = 0;j < v; ++j) {
mint ajv = a[j + v];
a[j + v] = a[j] - ajv;
a[j] += ajv;
}
}
int u = 1 << (2 + (k & 1));
int v = 1 << (k - 2 - (k & 1));
mint one = mint(1);
mint imag = dw[1];
while(v) {
{
int j0 = 0,j1 = v;
int j2 = j1 + v;
int j3 = j2 + v;
for(;j0 < v; ++j0,++j1,++j2,++j3) {
mint t0 = a[j0], t1 = a[j1],t2 = a[j2],t3 = a[j3];
mint t0p2 = t0 + t2,t1p3 = t1 + t3;
mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag;
a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
}
}
mint ww = one,xx = one * dw[2],wx = one;
for(int jh = 4;jh < u;) {
ww = xx * xx,wx = ww * xx;
int j0 = jh * v;
int je = j0 + v;
int j2 = je + v;
for(;j0 < je;++j0,++j2) {
mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,t3 = a[j2 + v] * wx;
mint t0p2 = t0 + t2,t1p3 = t1 + t3;
mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag;
a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
}
xx *= dw[__builtin_ctzll((jh += 4))];
}
u <<= 2;
v >>= 2;
}
}
void ifft4(vector<mint> &a,int k) {
if((int)a.size() <= 1) return;
if(k == 1) {
mint a1 = a[1];
a[1] = a[0] - a[1];
a[0] = a[0] + a1;
return;
}
int u = 1 << (k - 2);
int v = 1;
mint one = mint(1);
mint imag = dy[1];
while(u) {
{
int j0 = 0,j1 = v;
int j2 = j1 + v;
int j3 = j2 + v;
for(;j0 < v;++j0,++j1,++j2,++j3) {
mint t0 = a[j0],t1 = a[j1],t2 = a[j2],t3 = a[j3];
mint t0p1 = t0 + t1, t2p3 = t2 + t3;
mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
}
}
mint ww = one,xx = one * dy[2],yy = one;
u <<= 2;
for(int jh = 4;jh < u;) {
ww = xx * xx,yy = xx * imag;
int j0 = jh * v;
int je = j0 + v;
int j2 = je + v;
for(;j0 < je;++j0,++j2) {
mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
mint t0p1 = t0 + t1, t2p3 = t2 + t3;
mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
}
xx *= dy[__builtin_ctzll(jh += 4)];
}
u >>= 4;
v <<= 2;
}
if(k & 1) {
u = 1 << (k - 1);
for(int j = 0;j < u;++j) {
mint ajv = a[j] - a[j+u];
a[j] += a[j+u];
a[j+u] = ajv;
}
}
}
void ntt(vector<mint> &a) {
if((int)a.size() <= 1) return;
fft4(a,__builtin_ctz(a.size()));
}
void intt(vector<mint> &a) {
if((int)a.size() <= 1) return;
ifft4(a,__builtin_ctz(a.size()));
mint iv = mint(a.size()).inverse();
for(auto &x:a) x *= iv;
}
vector<mint> multiply(const vector<mint> &a,const vector<mint> &b) {
int l = a.size() + b.size() - 1;
if(min<int>(a.size(),b.size()) <= 40) {
vector<mint> s(l);
for(int i = 0;i < (int)a.size();++i) for(int j = 0;j < (int)b.size();++j) s[i+j] += a[i] * b[j];
return s;
}
int k = 2, M = 4;
while(M < l) M <<= 1, ++k;
//setwy(k);
vector<mint> s(M), t(M);
for(int i = 0;i < (int)a.size();++i) s[i] = a[i];
for(int i = 0;i < (int)b.size();++i) t[i] = b[i];
fft4(s,k);
fft4(t,k);
for(int i = 0;i < M;++i) s[i] *= t[i];
ifft4(s,k);
s.resize(l);
mint invm = mint(M).inverse();
for(int i = 0;i < l;++i) s[i] *= invm;
return s;
}
void ntt_doubling(vector<mint> &a) {
int M = (int)a.size();
auto b = a;
intt(b);
mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
for(int i = 0;i < M;++i) b[i] *= r,r *= zeta;
ntt(b);
copy(begin(b),end(b),back_inserter(a));
}
};
#line 91 "test.cpp"
#line 2 "fps/formal-power-series.hpp"
template <typename mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.back().inverse();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
FPS pre(int sz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert((*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_fft();
FPS &operator*=(const FPS &r);
void ntt();
void intt();
void ntt_doubling();
static int ntt_pr();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
/**
* @brief 多項式/形式的冪級数ライブラリ
* @docs docs/fps/formal-power-series.md
*/
#line 2 "modulo/binomial.hpp"
template <typename T>
struct Binomial {
vector<T> f, g, h;
Binomial(int MAX = 0) {
assert(T::get_mod() != 0 && "Binomial<mint>()");
f.resize(1, T{1});
g.resize(1, T{1});
h.resize(1, T{1});
while (MAX >= (int)f.size()) extend();
}
void extend() {
int n = f.size();
int m = n * 2;
f.resize(m);
g.resize(m);
h.resize(m);
for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
g[m - 1] = f[m - 1].inverse();
h[m - 1] = g[m - 1] * f[m - 2];
for (int i = m - 2; i >= n; i--) {
g[i] = g[i + 1] * T(i + 1);
h[i] = g[i] * f[i - 1];
}
}
T fac(int i) {
if (i < 0) return T(0);
while (i >= (int)f.size()) extend();
return f[i];
}
T finv(int i) {
if (i < 0) return T(0);
while (i >= (int)g.size()) extend();
return g[i];
}
T inv(int i) {
if (i < 0) return -inv(-i);
while (i >= (int)h.size()) extend();
return h[i];
}
T C(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r) * finv(r);
}
inline T operator()(int n, int r) { return C(n, r); }
template <typename I>
T multinomial(const vector<I>& r) {
static_assert(is_integral<I>::value == true);
int n = 0;
for (auto& x : r) {
if (x < 0) return T(0);
n += x;
}
T res = fac(n);
for (auto& x : r) res *= finv(x);
return res;
}
template <typename I>
T operator()(const vector<I>& r) {
return multinomial(r);
}
T C_naive(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
T ret = T(1);
r = min(r, n - r);
for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
return ret;
}
T P(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r);
}
T H(int n, int r) {
if (n < 0 || r < 0) return T(0);
return r == 0 ? 1 : C(n + r - 1, r);
}
};
#line 4 "fps/taylor-shift.hpp"
// calculate F(x + a)
template <typename mint>
FormalPowerSeries<mint> TaylorShift(FormalPowerSeries<mint> f, mint a,
Binomial<mint>& C) {
using fps = FormalPowerSeries<mint>;
int N = f.size();
for (int i = 0; i < N; i++) f[i] *= C.fac(i);
reverse(begin(f), end(f));
fps g(N, mint(1));
for (int i = 1; i < N; i++) g[i] = g[i - 1] * a * C.inv(i);
f = (f * g).pre(N);
reverse(begin(f), end(f));
for (int i = 0; i < N; i++) f[i] *= C.finv(i);
return f;
}
template<typename mint>
void FormalPowerSeries<mint>::set_fft() {
if(!ntt_ptr) ntt_ptr = new NTT<mint>;
}
template<typename mint>
FormalPowerSeries<mint> &FormalPowerSeries<mint>::operator*=(const FormalPowerSeries<mint> &r){
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
set_fft();
auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this,r);
return *this = FormalPowerSeries<mint>(ret.begin(),ret.end());
}
template<typename mint>
void FormalPowerSeries<mint>::ntt() {
set_fft();
static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);
}
template<typename mint>
void FormalPowerSeries<mint>::intt() {
set_fft();
static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);
}
template<typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
set_fft();
static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);
}
template<typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
set_fft();
return static_cast<NTT<mint>*>(ntt_pr)->pr;
}
template<typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
assert((*this)[0] != mint(0));
if(deg == -1) deg = (int)this->size();
FormalPowerSeries<mint> res(deg);
res[0] = {mint(1)/(*this)[0]};
for(int d = 1;d < deg;d <<= 1) {
FormalPowerSeries<mint> f(2*d),g(2*d);
for(int j = 0;j < min((int)this->size(),2*d);j++) f[j] = (*this)[j];
for(int j = 0;j < d;j++) g[j] = res[j];
f.ntt();
g.ntt();
for(int j = 0;j < 2 * d;j++) f[j] *= g[j];
f.intt();
for(int j = 0;j < d;j++) f[j] = 0;
f.ntt();
for(int j = 0;j < 2 * d;j++) f[j] *= g[j];
f.intt();
for(int j = d;j < min(2 * d,deg);j++) res[j] = -f[j];
}
return res.pre(deg);
}
template<typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
using fps = FormalPowerSeries<mint>;
assert((*this).size() == 0 || (*this)[0] == mint(0));
if(deg == -1) deg = this->size();
fps inv;
inv.reserve(deg + 1);
inv.push_back(mint(0));
inv.push_back(mint(1));
auto inplace_integral = [&](fps &F) -> void {
const int n = (int)F.size();
auto MOD = mint::get_mod();
while((int)inv.size() <= n) {
int i = inv.size();
inv.push_back((-inv[MOD%i]) * (MOD/i));
}
F.insert(begin(F),mint(0));
for(int i = 1;i <= n;i++) F[i] *= inv[i];
};
auto inplace_diff = [](fps &F) -> void {
if(F.empty()) return;
F.erase(begin(F));
mint coeff = 1,one = 1;
for(int i = 0;i < (int)F.size();i++) {
F[i] *= coeff;
coeff += one;
}
};
fps b{1,1 < (int)this->size() ? (*this)[1]:0},c{1},z1,z2{1,1};
for(int m = 2;m < deg;m *= 2) {
auto y = b;
y.resize(2*m);
y.ntt();
z1 = z2;
fps z(m);
for(int i = 0;i < m;++i) z[i] = y[i] * z1[i];
z.intt();
fill(begin(z),begin(z)+m/2,mint(0));
z.ntt();
for(int i = 0;i < m;++i) z[i] *= -z1[i];
z.intt();
c.insert(end(c),begin(z)+m/2,end(z));
z2 = c;
z2.resize(2*m);
z2.ntt();
fps x(begin(*this),begin(*this)+min<int>(this->size(),m));
x.resize(m);
inplace_diff(x);
x.push_back(mint(0));
x.ntt();
for(int i = 0;i < m;++i) x[i] *= y[i];
x.intt();
x -= b.diff();
x.resize(2*m);
for(int i = 0;i < m - 1;++i) x[m+i] = x[i],x[i] = mint(0);
x.ntt();
for(int i = 0;i < 2 * m;++i) x[i] *= z2[i];
x.intt();
x.pop_back();
inplace_integral(x);
for(int i = m;i < min<int>(this->size(),2*m);++i) x[i] += (*this)[i];
fill(begin(x),begin(x)+m,mint(0));
x.ntt();
for(int i = 0;i < 2 * m;++i) x[i] *= y[i];
x.intt();
b.insert(end(b),begin(x)+m,end(x));
}
return fps{begin(b),begin(b)+deg};
}
/**
* @brief 平行移動
* @docs docs/fps/fps-taylor-shift.md
*/
#line 5 "fps/fps-famous-series.hpp"
template <typename mint>
FormalPowerSeries<mint> Stirling1st(int N, Binomial<mint> &C) {
using fps = FormalPowerSeries<mint>;
if (N <= 0) return fps{1};
int lg = 31 - __builtin_clz(N);
fps f = {0, 1};
for (int i = lg - 1; i >= 0; i--) {
int n = N >> i;
f *= TaylorShift(f, mint(n >> 1), C);
if (n & 1) f = (f << 1) + f * (n - 1);
}
return f;
}
template <typename mint>
FormalPowerSeries<mint> Stirling2nd(int N, Binomial<mint> &C) {
using fps = FormalPowerSeries<mint>;
fps f(N + 1), g(N + 1);
for (int i = 0; i <= N; i++) {
f[i] = mint(i).pow(N) * C.finv(i);
g[i] = (i & 1) ? -C.finv(i) : C.finv(i);
}
return (f * g).pre(N + 1);
}
template <typename mint>
FormalPowerSeries<mint> BernoulliEGF(int N, Binomial<mint> &C) {
using fps = FormalPowerSeries<mint>;
fps f(N + 1);
for (int i = 0; i <= N; i++) f[i] = C.finv(i + 1);
return f.inv(N + 1);
}
template <typename mint>
FormalPowerSeries<mint> Partition(int N, Binomial<mint> &C) {
using fps = FormalPowerSeries<mint>;
fps f(N + 1);
f[0] = 1;
for (int k = 1; k <= N; k++) {
long long k1 = 1LL * k * (3 * k + 1) / 2;
long long k2 = 1LL * k * (3 * k - 1) / 2;
if (k2 > N) break;
if (k1 <= N) f[k1] += ((k & 1) ? -1 : 1);
if (k2 <= N) f[k2] += ((k & 1) ? -1 : 1);
}
return f.inv();
}
template <typename mint>
vector<mint> Montmort(int N) {
if (N <= 1) return {0};
if (N == 2) return {0, 1};
vector<mint> f(N);
f[0] = 0, f[1] = 1;
mint coeff = 2, one = 1;
for (int i = 2; i < N; i++) {
f[i] = (f[i - 1] + f[i - 2]) * coeff;
coeff += one;
}
return f;
};
/**
* @brief 有名な数列
*/
Binomial<mint> C;
int main() {
INT(n);
mint ans;
auto s1 = Stirling1st<mint>(n,C);
rep(i,1,n+1) ans += s1[i] * i * i * i;
cout << ans << '\n';
}
siganai