結果
| 問題 |
No.2250 Split Permutation
|
| コンテスト | |
| ユーザー |
k1suxu
|
| 提出日時 | 2023-03-17 23:15:03 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 199 ms / 3,000 ms |
| コード長 | 12,119 bytes |
| コンパイル時間 | 2,859 ms |
| コンパイル使用メモリ | 260,688 KB |
| 実行使用メモリ | 12,572 KB |
| 最終ジャッジ日時 | 2024-09-18 12:17:04 |
| 合計ジャッジ時間 | 5,970 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 35 |
ソースコード
// #pragma GCC target("avx")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for(int i = 0; i < (int)n; i++)
#define FOR(n) for(int i = 0; i < (int)n; i++)
#define repi(i,a,b) for(int i = (int)a; i < (int)b; i++)
#define all(x) x.begin(),x.end()
//#define mp make_pair
#define vi vector<int>
#define vvi vector<vi>
#define vvvi vector<vvi>
#define vvvvi vector<vvvi>
#define pii pair<int,int>
#define vpii vector<pair<int,int>>
template<typename T>
void chmax(T &a, const T &b) {a = (a > b? a : b);}
template<typename T>
void chmin(T &a, const T &b) {a = (a < b? a : b);}
using ll = long long;
using ld = long double;
using ull = unsigned long long;
const ll INF = numeric_limits<long long>::max() / 2;
const ld pi = 3.1415926535897932384626433832795028;
const ll mod = 998244353;
int dx[] = {1, 0, -1, 0, -1, -1, 1, 1};
int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};
#define int long long
template<int MOD>
struct Modular_Int {
int x;
Modular_Int() = default;
Modular_Int(int x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {}
int val() const {
return (x%MOD+MOD)%MOD;
}
int get_mod() const {
return MOD;
}
Modular_Int<MOD>& operator^=(int d) {
Modular_Int<MOD> ret(1);
int nx = x;
while(d) {
if(d&1) ret *= nx;
(nx *= nx) %= MOD;
d >>= 1;
}
*this = ret;
return *this;
}
Modular_Int<MOD> operator^(int d) const {return Modular_Int<MOD>(*this) ^= d;}
Modular_Int<MOD> pow(int d) const {return Modular_Int<MOD>(*this) ^= d;}
//use this basically
Modular_Int<MOD> inv() const {
return Modular_Int<MOD>(*this) ^ (MOD-2);
}
//only if the module number is not prime
//Don't use. This is broken.
// Modular_Int<MOD> inv() const {
// int a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0;
// while(b) {
// int t = a/b;
// a -= t*b, swap(a, b);
// u -= t*v, swap(u, v);
// }
// return Modular_Int<MOD>(u);
// }
Modular_Int<MOD>& operator+=(const Modular_Int<MOD> other) {
if((x += other.x) >= MOD) x -= MOD;
return *this;
}
Modular_Int<MOD>& operator-=(const Modular_Int<MOD> other) {
if((x -= other.x) < 0) x += MOD;
return *this;
}
Modular_Int<MOD>& operator*=(const Modular_Int<MOD> other) {
int z = x;
z *= other.x;
z %= MOD;
x = z;
if(x < 0) x += MOD;
return *this;
}
Modular_Int<MOD>& operator/=(const Modular_Int<MOD> other) {
return *this = *this * other.inv();
}
Modular_Int<MOD>& operator++() {
x++;
if (x == MOD) x = 0;
return *this;
}
Modular_Int<MOD>& operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
Modular_Int<MOD> operator+(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) += other;}
Modular_Int<MOD> operator-(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) -= other;}
Modular_Int<MOD> operator*(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) *= other;}
Modular_Int<MOD> operator/(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) /= other;}
Modular_Int<MOD>& operator+=(const int other) {Modular_Int<MOD> other_(other); *this += other_; return *this;}
Modular_Int<MOD>& operator-=(const int other) {Modular_Int<MOD> other_(other); *this -= other_; return *this;}
Modular_Int<MOD>& operator*=(const int other) {Modular_Int<MOD> other_(other); *this *= other_; return *this;}
Modular_Int<MOD>& operator/=(const int other) {Modular_Int<MOD> other_(other); *this /= other_; return *this;}
Modular_Int<MOD> operator+(const int other) const {return Modular_Int<MOD>(*this) += other;}
Modular_Int<MOD> operator-(const int other) const {return Modular_Int<MOD>(*this) -= other;}
Modular_Int<MOD> operator*(const int other) const {return Modular_Int<MOD>(*this) *= other;}
Modular_Int<MOD> operator/(const int other) const {return Modular_Int<MOD>(*this) /= other;}
bool operator==(const Modular_Int<MOD> other) const {return (*this).val() == other.val();}
bool operator!=(const Modular_Int<MOD> other) const {return (*this).val() != other.val();}
bool operator==(const int other) const {return (*this).val() == other;}
bool operator!=(const int other) const {return (*this).val() != other;}
Modular_Int<MOD> operator-() const {return Modular_Int<MOD>(0LL)-Modular_Int<MOD>(*this);}
//入れ子にしたい
// friend constexpr istream& operator>>(istream& is, mint& x) noexcept {
// int X;
// is >> X;
// x = X;
// return is;
// }
// friend constexpr ostream& operator<<(ostream& os, mint& x) {
// os << x.val();
// return os;
// }
};
// const int MOD_VAL = 1e9+7;
const int MOD_VAL = 998244353;
using mint = Modular_Int<MOD_VAL>;
istream& operator>>(istream& is, mint& x) {
int X;
is >> X;
x = X;
return is;
}
ostream& operator<<(ostream& os, mint& x) {
os << x.val();
return os;
}
// istream& operator<<(istream& is, mint &a) {
// int x;
// is >> x;
// a = mint(x);
// return is;
// }
// ostream& operator<<(ostream& os, mint a) {
// os << a.val();
// return os;
// }
// vector<mint> f = {1}, rf = {1};
// void init(int n) {
// f.resize(n, 0);
// rf.resize(n, 0);
// f[0] = 1;
// repi(i, 1, n) f[i] = (f[i - 1] * i);
// repi(i, 0, n) rf[i] = f[i].inv();
// }
// mint P(int n, int k) {
// assert(n>=k);
// while(n > f.size()-1) {
// f.push_back(f.back() * f.size());
// rf.push_back(f.back().inv());
// }
// return f[n] * f[n-k];
// }
// mint C(int n, int k) {
// assert(n>=k);
// while(n > f.size()-1) {
// f.push_back(f.back() * f.size());
// rf.push_back(f.back().inv());
// }
// return f[n]*rf[n-k]*rf[k];
// }
// mint H(int n, int k) {
// assert(n>=1);
// return C(n+k-1, k);
// }
// mint Cat(int n) {
// return C(2*n, n)-C(2*n, n-1);
// }
struct RSQ {
int n;
vector<int> dat;
RSQ(int n_) : n(), dat(n_ * 4, 0) {
int x = 1;
while(n_ > x) {
x *= 2;
}
n = x;
}
void update(int i, int x) {
i += n - 1;
dat[i] = x;
while(i) {
i = (i - 1) / 2;
dat[i] = dat[i * 2 + 1] + dat[i * 2 + 2];
}
}
void add(int i, int x) {
i += n - 1;
dat[i] += x;
while(i) {
i = (i - 1) / 2;
dat[i] = dat[i * 2 + 1] + dat[i * 2 + 2];
}
}
// set(i, a) = add(i, a - get(i))
int get(int i) {
return dat[i + n - 1];
}
// [a, b) 蟾ヲ蜊企幕蛹コ髢�
int query(int a, int b) {return query_sub(a, b, 0, 0, n);}
int query_sub(int a, int b, int k, int l, int r) {
if(r <= a || b <= l) {
return 0;
}else if(a <= l && r <= b) {
return dat[k];
}else {
int vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2);
int vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r);
return vl + vr;
}
}
};
template <typename T>
vector<T> compress(vector<T> &X) {
vector<T> vals = X;
sort(vals.begin(), vals.end());
vals.erase(unique(vals.begin(), vals.end()), vals.end());
for (int i = 0; i < (int)X.size(); i++) {
X[i] = lower_bound(vals.begin(), vals.end(), X[i]) - vals.begin();
}
//vals[X[i]] = original X[i]
return vals;
}
int the_number_of_inversions(vector<int> a) {
int n = (int)a.size();
compress(a);
RSQ tree(n);
int inversion = 0;
FOR(n) {
inversion += tree.query(a[i]+1, n+10);
tree.add(a[i], 1);
}
return inversion;
}
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
explicit segtree(const std::vector<S>& v) : _n((int)v.size()) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) const {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() const { return d[1]; }
template <bool (*f)(S)> int max_right(int l) const {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) const {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
using S = mint;
S op(S x, S y) {
return x + y;
}
S e() {
return 0;
}
void solve() {
int n;
cin >> n;
vi p(n);
FOR(n) {
cin >> p[i];
--p[i];
}
mint ans = mint(the_number_of_inversions(p)) * mint(2).pow(n-1);
segtree<S, op, e> seg(n);
rep(i, n) {
mint sum = seg.prod(p[i], n);
ans -= sum * mint(2).pow(n-1-i);
seg.set(p[i], mint(2).pow(i));
}
cout << ans << endl;
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
solve();
return 0;
}
k1suxu